|
@@ -0,0 +1,363 @@
|
|
|
+/*
|
|
|
+ * Author:
|
|
|
+ * Sven Czarnian <devel@svcz.de>
|
|
|
+ * Brief:
|
|
|
+ * Implements the inbound
|
|
|
+ * Copyright:
|
|
|
+ * 2021 Sven Czarnian
|
|
|
+ * License:
|
|
|
+ * GNU General Public License v3 (GPLv3)
|
|
|
+ */
|
|
|
+
|
|
|
+#include <Windows.h>
|
|
|
+
|
|
|
+#include <gsl/gsl>
|
|
|
+
|
|
|
+#include <aman/helper/String.h>
|
|
|
+#include <aman/types/Inbound.h>
|
|
|
+
|
|
|
+using namespace aman;
|
|
|
+
|
|
|
+static __inline GeoCoordinate __convert(const EuroScopePlugIn::CPosition& position) {
|
|
|
+ return GeoCoordinate(static_cast<float>(position.m_Longitude) * degree, static_cast<float>(position.m_Latitude) * degree);
|
|
|
+}
|
|
|
+
|
|
|
+Inbound::Inbound(EuroScopePlugIn::CRadarTarget& target, const aman::AircraftSchedule& inbound,
|
|
|
+ const google::protobuf::RepeatedPtrField<aman::WindData>& wind) :
|
|
|
+ m_windLevels(),
|
|
|
+ m_windDirections(),
|
|
|
+ m_windSpeeds(),
|
|
|
+ m_performanceData(),
|
|
|
+ m_fixedPlan(inbound.fixed()),
|
|
|
+ m_star(inbound.arrivalroute()),
|
|
|
+ m_runway(inbound.arrivalrunway()),
|
|
|
+ m_nextStarWaypoint(),
|
|
|
+ m_arrivalRoute(),
|
|
|
+ m_timeToLose() {
|
|
|
+ this->createWindTables(wind);
|
|
|
+ this->updatePrediction(target, inbound, true);
|
|
|
+ auto flightplan = target.GetCorrelatedFlightPlan();
|
|
|
+ this->update(flightplan);
|
|
|
+}
|
|
|
+
|
|
|
+void Inbound::createWindTables(const google::protobuf::RepeatedPtrField<aman::WindData>& wind) {
|
|
|
+ this->m_windLevels.clear();
|
|
|
+ this->m_windDirections.clear();
|
|
|
+ this->m_windSpeeds.clear();
|
|
|
+
|
|
|
+ this->m_windLevels.reserve(static_cast<std::size_t>(wind.size()));
|
|
|
+ this->m_windDirections.reserve(static_cast<std::size_t>(wind.size()));
|
|
|
+ this->m_windSpeeds.reserve(static_cast<std::size_t>(wind.size()));
|
|
|
+
|
|
|
+ for (int i = 0; i < wind.size(); ++i) {
|
|
|
+ const auto& level = wind.Get(i);
|
|
|
+
|
|
|
+ this->m_windLevels.push_back(static_cast<float>(level.altitude()));
|
|
|
+ this->m_windDirections.push_back(static_cast<float>(level.direction()));
|
|
|
+ this->m_windSpeeds.push_back(static_cast<float>(level.speed()));
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void Inbound::updatePrediction(EuroScopePlugIn::CRadarTarget& target, const aman::AircraftSchedule& inbound, bool forceUpdate) {
|
|
|
+ bool updatedFlightplan = false;
|
|
|
+
|
|
|
+ this->m_performanceData.speedAboveFL240 = static_cast<float>(inbound.performance().iasabovefl240()) * knot;
|
|
|
+ this->m_performanceData.speedAboveFL100 = static_cast<float>(inbound.performance().iasabovefl100()) * knot;
|
|
|
+ this->m_performanceData.speedBelowFL100 = static_cast<float>(inbound.performance().iasbelowfl100()) * knot;
|
|
|
+ this->m_performanceData.speedApproach = static_cast<float>(inbound.performance().iasapproach()) * knot;
|
|
|
+
|
|
|
+ if (true == forceUpdate || this->m_star != target.GetCorrelatedFlightPlan().GetFlightPlanData().GetStarName() || this->m_runway != target.GetCorrelatedFlightPlan().GetFlightPlanData().GetArrivalRwy()) {
|
|
|
+ std::string route(target.GetCorrelatedFlightPlan().GetFlightPlanData().GetRoute());
|
|
|
+ std::string arrival = this->m_star + "/" + this->m_runway;
|
|
|
+
|
|
|
+ auto split = String::splitString(route, " ");
|
|
|
+ std::string newRoute;
|
|
|
+
|
|
|
+ /* create the new route */
|
|
|
+ if (1 < split.size()) {
|
|
|
+ for (std::size_t i = 0; i < split.size() - 1; ++i)
|
|
|
+ newRoute += gsl::at(split, i) + " ";
|
|
|
+ }
|
|
|
+ /* check if the last entry is the arrival route */
|
|
|
+ const auto& lastEntry = gsl::at(split, split.size() - 1);
|
|
|
+ if (lastEntry.cend() == std::find_if(lastEntry.cbegin(), lastEntry.cend(), ::isdigit))
|
|
|
+ newRoute += gsl::at(split, split.size() - 1) + " ";
|
|
|
+ /* add the arrival route */
|
|
|
+ newRoute += arrival;
|
|
|
+
|
|
|
+ /* write into the flight plan */
|
|
|
+ target.GetCorrelatedFlightPlan().GetFlightPlanData().SetRoute(newRoute.c_str());
|
|
|
+ target.GetCorrelatedFlightPlan().GetFlightPlanData().AmendFlightPlan();
|
|
|
+
|
|
|
+ updatedFlightplan = true;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (true == updatedFlightplan) {
|
|
|
+ this->m_arrivalRoute.clear();
|
|
|
+ this->m_arrivalRoute.reserve(inbound.waypoints_size());
|
|
|
+ auto route = target.GetCorrelatedFlightPlan().GetExtractedRoute();
|
|
|
+ int lastExtractedIndex = 0;
|
|
|
+
|
|
|
+ for (int i = 0; i < inbound.waypoints_size(); ++i) {
|
|
|
+ const auto& plannedPoint = inbound.waypoints(i);
|
|
|
+
|
|
|
+ const auto pta = UtcTime::stringToTime(plannedPoint.pta());
|
|
|
+ const auto altitude = static_cast<float>(plannedPoint.altitude()) * feet;
|
|
|
+ const auto ias = static_cast<float>(plannedPoint.indicatedairspeed()) * knot;
|
|
|
+ GeoCoordinate coordinate;
|
|
|
+
|
|
|
+ bool found = false;
|
|
|
+ for (int c = lastExtractedIndex; c < route.GetPointsNumber(); ++c) {
|
|
|
+ if (route.GetPointName(c) == plannedPoint.name()) {
|
|
|
+ coordinate = __convert(route.GetPointPosition(c));
|
|
|
+ lastExtractedIndex = c;
|
|
|
+ found = true;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (true == found)
|
|
|
+ this->m_arrivalRoute.push_back(ArrivalWaypoint(plannedPoint.name(), coordinate, altitude, ias, pta));
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void Inbound::update(EuroScopePlugIn::CRadarTarget& target, const aman::AircraftSchedule& inbound,
|
|
|
+ const google::protobuf::RepeatedPtrField<aman::WindData>& wind) {
|
|
|
+ this->m_fixedPlan = inbound.fixed();
|
|
|
+ this->m_star = inbound.arrivalroute();
|
|
|
+ this->m_runway = inbound.arrivalrunway();
|
|
|
+ this->createWindTables(wind);
|
|
|
+
|
|
|
+ this->updatePrediction(target, inbound, false);
|
|
|
+ auto flightplan = target.GetCorrelatedFlightPlan();
|
|
|
+ this->update(flightplan);
|
|
|
+}
|
|
|
+
|
|
|
+Velocity Inbound::indicatedAirspeed(const Length& altitude) const noexcept {
|
|
|
+ if (24000_ft <= altitude)
|
|
|
+ return this->m_performanceData.speedAboveFL240;
|
|
|
+ else if (10000_ft <= altitude)
|
|
|
+ return this->m_performanceData.speedAboveFL100;
|
|
|
+ else if (1000_ft < altitude)
|
|
|
+ return this->m_performanceData.speedBelowFL100;
|
|
|
+ else
|
|
|
+ return this->m_performanceData.speedApproach;
|
|
|
+}
|
|
|
+
|
|
|
+template <typename T, typename U>
|
|
|
+static __inline U __interpolate(const std::vector<T>& xAxis, const std::vector<U>& yAxis, const T& xValue, bool limit) {
|
|
|
+ bool inverse = gsl::at(xAxis, 0) > gsl::at(xAxis, xAxis.size() - 1);
|
|
|
+
|
|
|
+ /* define the search value */
|
|
|
+ T value = xValue;
|
|
|
+ if (true == limit) {
|
|
|
+ if (true == inverse) {
|
|
|
+ if (value > gsl::at(xAxis, 0))
|
|
|
+ value = gsl::at(xAxis, 0);
|
|
|
+ else if (value < gsl::at(xAxis, xAxis.size() - 1))
|
|
|
+ value = gsl::at(xAxis, xAxis.size() - 1);
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ if (value < gsl::at(xAxis, 0))
|
|
|
+ value = gsl::at(xAxis, 0);
|
|
|
+ else if (value > gsl::at(xAxis, xAxis.size() - 1))
|
|
|
+ value = gsl::at(xAxis, xAxis.size() - 1);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* search the correct value */
|
|
|
+ for (std::size_t i = 0; i < xAxis.size() - 1; ++i) {
|
|
|
+ const auto& prevX = gsl::at(xAxis, i);
|
|
|
+ const auto& nextX = gsl::at(xAxis, i + 1);
|
|
|
+ bool inside;
|
|
|
+
|
|
|
+ if (true == inverse)
|
|
|
+ inside = prevX >= xValue && nextX <= xValue;
|
|
|
+ else
|
|
|
+ inside = prevX <= xValue && nextX >= xValue;
|
|
|
+
|
|
|
+ if (true == inside) {
|
|
|
+ auto ratio = (xValue - prevX) / (nextX - prevX);
|
|
|
+ const auto& prevY = gsl::at(yAxis, i);
|
|
|
+ const auto& nextY = gsl::at(yAxis, i + 1);
|
|
|
+ return prevY + ratio * (nextY - prevY);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return U();
|
|
|
+}
|
|
|
+
|
|
|
+Velocity Inbound::groundSpeed(const Length& altitude, const Velocity& ias, const Angle& heading) {
|
|
|
+ static std::vector <float> levels = {
|
|
|
+ 50000.0f, 45000.0f, 40000.0f, 38000.0f, 36000.0f, 34000.0f, 32000.0f, 30000.0f, 28000.0f,
|
|
|
+ 26000.0f, 24000.0f, 22000.0f, 20000.0f, 18000.0f, 16000.0f, 15000.0f, 14000.0f, 13000.0f,
|
|
|
+ 12000.0f, 11000.0f, 10000.0f, 9000.0f, 8000.0f, 7000.0f, 6000.0f, 5000.0f, 4000.0f,
|
|
|
+ 3000.0f, 2000.0f, 1000.0f, 0.0f
|
|
|
+ };
|
|
|
+ static std::vector<float> densities = {
|
|
|
+ 0.18648f, 0.23714f, 0.24617f, 0.33199f, 0.36518f, 0.39444f, 0.42546f, 0.45831f, 0.402506f, 0.432497f, 0.464169f,
|
|
|
+ 0.60954f, 0.65269f, 0.69815f, 0.74598f, 0.77082f, 0.79628f, 0.82238f, 0.84914f, 0.87655f, 0.90464f, 0.93341f,
|
|
|
+ 0.96287f, 0.99304f, 1.02393f, 1.05555f, 1.08791f, 1.12102f, 1.1549f, 1.18955f, 1.225f
|
|
|
+ };
|
|
|
+
|
|
|
+ const auto density = __interpolate(levels, densities, altitude.convert(feet), true);
|
|
|
+ const auto tas = ias * std::sqrtf(1.225f / density);
|
|
|
+ Angle windDirection(0.0_deg);
|
|
|
+ Velocity windSpeed(0.0_mps);
|
|
|
+
|
|
|
+ if (0 != this->m_windLevels.size()) {
|
|
|
+ windDirection = __interpolate(this->m_windLevels, this->m_windDirections, altitude.convert(feet), true) * degree;
|
|
|
+ windSpeed = __interpolate(this->m_windLevels, this->m_windSpeeds, altitude.convert(feet), true) * knot;
|
|
|
+ }
|
|
|
+
|
|
|
+ return tas + windSpeed * std::cosf(windDirection.convert(radian) - heading.convert(radian));
|
|
|
+}
|
|
|
+
|
|
|
+static __inline Angle __normalize(const Angle& angle) {
|
|
|
+ auto retval(angle);
|
|
|
+
|
|
|
+ while (-1.0f * 180_deg > retval)
|
|
|
+ retval += 360_deg;
|
|
|
+ while (180_deg < retval)
|
|
|
+ retval -= 360_deg;
|
|
|
+
|
|
|
+ return retval;
|
|
|
+}
|
|
|
+
|
|
|
+int Inbound::findIndexInPredictedPath(const EuroScopePlugIn::CFlightPlanPositionPredictions& predictions, const GeoCoordinate& position) {
|
|
|
+ if (0 == predictions.GetPointsNumber())
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ GeoCoordinate lastPosition(__convert(predictions.GetPosition(0)));
|
|
|
+
|
|
|
+ for (int i = 1; i < predictions.GetPointsNumber(); ++i) {
|
|
|
+ GeoCoordinate coordinate(__convert(predictions.GetPosition(i)));
|
|
|
+
|
|
|
+ const auto prev = lastPosition.bearingTo(position);
|
|
|
+ const auto next = coordinate.bearingTo(position);
|
|
|
+ const auto delta = __normalize(prev - next);
|
|
|
+ if (100_deg <= delta.abs())
|
|
|
+ return i;
|
|
|
+
|
|
|
+ lastPosition = coordinate;
|
|
|
+ }
|
|
|
+
|
|
|
+ return predictions.GetPointsNumber();
|
|
|
+}
|
|
|
+
|
|
|
+void Inbound::update(EuroScopePlugIn::CRadarTarget& target) {
|
|
|
+ if (this->m_arrivalRoute.size() <= this->m_nextStarWaypoint) {
|
|
|
+ this->m_timeToLose = 0_s;
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ const auto& destination = gsl::at(this->m_arrivalRoute, this->m_nextStarWaypoint);
|
|
|
+ const auto& predictions = target.GetCorrelatedFlightPlan().GetPositionPredictions();
|
|
|
+ GeoCoordinate lastPosition(__convert(target.GetPosition().GetPosition()));
|
|
|
+ Length distanceToNextWaypoint = 0_m;
|
|
|
+
|
|
|
+ /* calculate the distance to the correct waypoint */
|
|
|
+ for (int i = 0; i < predictions.GetPointsNumber(); ++i) {
|
|
|
+ GeoCoordinate coordinate(__convert(predictions.GetPosition(i)));
|
|
|
+
|
|
|
+ const auto prev = lastPosition.bearingTo(destination.position());
|
|
|
+ const auto next = coordinate.bearingTo(destination.position());
|
|
|
+ const auto delta = __normalize(prev - next);
|
|
|
+ if (100_deg <= delta.abs())
|
|
|
+ break;
|
|
|
+
|
|
|
+ distanceToNextWaypoint += coordinate.distanceTo(lastPosition);
|
|
|
+ lastPosition = coordinate;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* predict the flight and the descend */
|
|
|
+ Velocity groundSpeed = static_cast<float>(target.GetPosition().GetReportedGS()) * knot;
|
|
|
+ Length altitude = static_cast<float>(target.GetPosition().GetFlightLevel()) * feet;
|
|
|
+ Angle heading = __convert(predictions.GetPosition(0)).bearingTo(destination.position());
|
|
|
+
|
|
|
+ Time flightTime = 0_s;
|
|
|
+ while (0.0_m < distanceToNextWaypoint) {
|
|
|
+ Length distance = groundSpeed * 10_s;
|
|
|
+
|
|
|
+ if (altitude > destination.altitude()) {
|
|
|
+ /* new descend required based on 3° glide */
|
|
|
+ if (((altitude - destination.altitude()).convert(feet) / 1000.0f * 3.0f) > distanceToNextWaypoint.convert(nauticmile)) {
|
|
|
+ const auto oldGS = groundSpeed;
|
|
|
+ const auto descendRate = oldGS * 10_s * std::sinf(0.0523599f);
|
|
|
+ altitude -= descendRate;
|
|
|
+
|
|
|
+ const auto newGS = this->groundSpeed(altitude, this->indicatedAirspeed(altitude), heading);
|
|
|
+ groundSpeed = std::min(groundSpeed, newGS);
|
|
|
+
|
|
|
+ distance = (groundSpeed + oldGS) * 0.5f * 10_s;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ distanceToNextWaypoint -= distance;
|
|
|
+ flightTime += 10_s;
|
|
|
+ }
|
|
|
+
|
|
|
+ auto currentUtc = UtcTime::currentUtc();
|
|
|
+ auto pta = UtcTime::timeToString(destination.plannedArrivalTime());
|
|
|
+ auto estimated = UtcTime::timeToString(currentUtc + std::chrono::seconds(static_cast<int>(flightTime.convert(second))));
|
|
|
+ auto delta = std::chrono::duration_cast<std::chrono::seconds>(destination.plannedArrivalTime() - currentUtc);
|
|
|
+ auto plannedFlightTime = static_cast<float>(delta.count()) * second;
|
|
|
+ this->m_timeToLose = plannedFlightTime - flightTime;
|
|
|
+}
|
|
|
+
|
|
|
+void Inbound::update(EuroScopePlugIn::CFlightPlan& plan) {
|
|
|
+ this->m_nextStarWaypoint = 0;
|
|
|
+ if (0 == this->m_arrivalRoute.size())
|
|
|
+ return;
|
|
|
+
|
|
|
+ /* find the point on the route */
|
|
|
+ std::string_view direct(plan.GetControllerAssignedData().GetDirectToPointName());
|
|
|
+ auto route = plan.GetExtractedRoute();
|
|
|
+ int starEntry = route.GetPointsNumber(), directEntry = route.GetPointsNumber();
|
|
|
+
|
|
|
+ /* TODO search point if direct is empty */
|
|
|
+
|
|
|
+ for (int c = 0; c < route.GetPointsNumber(); ++c) {
|
|
|
+ std::string_view waypointName(route.GetPointName(c));
|
|
|
+
|
|
|
+ if (waypointName == this->m_arrivalRoute.front().name())
|
|
|
+ starEntry = c;
|
|
|
+ else if (waypointName == direct)
|
|
|
+ directEntry = c;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* search the direct to entry */
|
|
|
+ if (directEntry > starEntry && directEntry < route.GetPointsNumber()) {
|
|
|
+ /* try to find the closest next waypoint */
|
|
|
+ while (0 == this->m_nextStarWaypoint) {
|
|
|
+ for (std::size_t i = 0; i < this->m_arrivalRoute.size(); ++i) {
|
|
|
+ if (direct == gsl::at(this->m_arrivalRoute, i).name()) {
|
|
|
+ this->m_nextStarWaypoint = i;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (0 == this->m_nextStarWaypoint) {
|
|
|
+ directEntry += 1;
|
|
|
+ if (directEntry >= route.GetPointsNumber()) {
|
|
|
+ this->m_nextStarWaypoint = this->m_arrivalRoute.size() - 1;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ direct = std::string_view(route.GetPointName(directEntry));
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ EuroScopePlugIn::CRadarTarget target = plan.GetCorrelatedRadarTarget();
|
|
|
+ this->update(target);
|
|
|
+}
|
|
|
+
|
|
|
+bool Inbound::fixedPlan() const noexcept {
|
|
|
+ return this->m_fixedPlan;
|
|
|
+}
|
|
|
+
|
|
|
+const Time& Inbound::timeToLose() const noexcept {
|
|
|
+ return this->m_timeToLose;
|
|
|
+}
|