add external dependencies in a pre-built way to avoid incompatibilities
This commit is contained in:
		
							
								
								
									
										769
									
								
								external/include/google/protobuf/stubs/map_util.h
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										769
									
								
								external/include/google/protobuf/stubs/map_util.h
									
									
									
									
										vendored
									
									
										Normal file
									
								
							| @@ -0,0 +1,769 @@ | ||||
| // Protocol Buffers - Google's data interchange format | ||||
| // Copyright 2014 Google Inc.  All rights reserved. | ||||
| // https://developers.google.com/protocol-buffers/ | ||||
| // | ||||
| // Redistribution and use in source and binary forms, with or without | ||||
| // modification, are permitted provided that the following conditions are | ||||
| // met: | ||||
| // | ||||
| //     * Redistributions of source code must retain the above copyright | ||||
| // notice, this list of conditions and the following disclaimer. | ||||
| //     * Redistributions in binary form must reproduce the above | ||||
| // copyright notice, this list of conditions and the following disclaimer | ||||
| // in the documentation and/or other materials provided with the | ||||
| // distribution. | ||||
| //     * Neither the name of Google Inc. nor the names of its | ||||
| // contributors may be used to endorse or promote products derived from | ||||
| // this software without specific prior written permission. | ||||
| // | ||||
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | ||||
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | ||||
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | ||||
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | ||||
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||||
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | ||||
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | ||||
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | ||||
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||||
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||||
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||||
|  | ||||
| // from google3/util/gtl/map_util.h | ||||
| // Author: Anton Carver | ||||
|  | ||||
| #ifndef GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__ | ||||
| #define GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__ | ||||
|  | ||||
| #include <stddef.h> | ||||
| #include <iterator> | ||||
| #include <string> | ||||
| #include <utility> | ||||
| #include <vector> | ||||
|  | ||||
| #include <google/protobuf/stubs/common.h> | ||||
|  | ||||
| namespace google { | ||||
| namespace protobuf { | ||||
| namespace internal { | ||||
| // Local implementation of RemoveConst to avoid including base/type_traits.h. | ||||
| template <class T> struct RemoveConst { typedef T type; }; | ||||
| template <class T> struct RemoveConst<const T> : RemoveConst<T> {}; | ||||
| }  // namespace internal | ||||
|  | ||||
| // | ||||
| // Find*() | ||||
| // | ||||
|  | ||||
| // Returns a const reference to the value associated with the given key if it | ||||
| // exists. Crashes otherwise. | ||||
| // | ||||
| // This is intended as a replacement for operator[] as an rvalue (for reading) | ||||
| // when the key is guaranteed to exist. | ||||
| // | ||||
| // operator[] for lookup is discouraged for several reasons: | ||||
| //  * It has a side-effect of inserting missing keys | ||||
| //  * It is not thread-safe (even when it is not inserting, it can still | ||||
| //      choose to resize the underlying storage) | ||||
| //  * It invalidates iterators (when it chooses to resize) | ||||
| //  * It default constructs a value object even if it doesn't need to | ||||
| // | ||||
| // This version assumes the key is printable, and includes it in the fatal log | ||||
| // message. | ||||
| template <class Collection> | ||||
| const typename Collection::value_type::second_type& | ||||
| FindOrDie(const Collection& collection, | ||||
|           const typename Collection::value_type::first_type& key) { | ||||
|   typename Collection::const_iterator it = collection.find(key); | ||||
|   GOOGLE_CHECK(it != collection.end()) << "Map key not found: " << key; | ||||
|   return it->second; | ||||
| } | ||||
|  | ||||
| // Same as above, but returns a non-const reference. | ||||
| template <class Collection> | ||||
| typename Collection::value_type::second_type& | ||||
| FindOrDie(Collection& collection,  // NOLINT | ||||
|           const typename Collection::value_type::first_type& key) { | ||||
|   typename Collection::iterator it = collection.find(key); | ||||
|   GOOGLE_CHECK(it != collection.end()) << "Map key not found: " << key; | ||||
|   return it->second; | ||||
| } | ||||
|  | ||||
| // Same as FindOrDie above, but doesn't log the key on failure. | ||||
| template <class Collection> | ||||
| const typename Collection::value_type::second_type& | ||||
| FindOrDieNoPrint(const Collection& collection, | ||||
|                  const typename Collection::value_type::first_type& key) { | ||||
|   typename Collection::const_iterator it = collection.find(key); | ||||
|   GOOGLE_CHECK(it != collection.end()) << "Map key not found"; | ||||
|   return it->second; | ||||
| } | ||||
|  | ||||
| // Same as above, but returns a non-const reference. | ||||
| template <class Collection> | ||||
| typename Collection::value_type::second_type& | ||||
| FindOrDieNoPrint(Collection& collection,  // NOLINT | ||||
|                  const typename Collection::value_type::first_type& key) { | ||||
|   typename Collection::iterator it = collection.find(key); | ||||
|   GOOGLE_CHECK(it != collection.end()) << "Map key not found"; | ||||
|   return it->second; | ||||
| } | ||||
|  | ||||
| // Returns a const reference to the value associated with the given key if it | ||||
| // exists, otherwise returns a const reference to the provided default value. | ||||
| // | ||||
| // WARNING: If a temporary object is passed as the default "value," | ||||
| // this function will return a reference to that temporary object, | ||||
| // which will be destroyed at the end of the statement. A common | ||||
| // example: if you have a map with string values, and you pass a char* | ||||
| // as the default "value," either use the returned value immediately | ||||
| // or store it in a string (not string&). | ||||
| // Details: http://go/findwithdefault | ||||
| template <class Collection> | ||||
| const typename Collection::value_type::second_type& | ||||
| FindWithDefault(const Collection& collection, | ||||
|                 const typename Collection::value_type::first_type& key, | ||||
|                 const typename Collection::value_type::second_type& value) { | ||||
|   typename Collection::const_iterator it = collection.find(key); | ||||
|   if (it == collection.end()) { | ||||
|     return value; | ||||
|   } | ||||
|   return it->second; | ||||
| } | ||||
|  | ||||
| // Returns a pointer to the const value associated with the given key if it | ||||
| // exists, or nullptr otherwise. | ||||
| template <class Collection> | ||||
| const typename Collection::value_type::second_type* | ||||
| FindOrNull(const Collection& collection, | ||||
|            const typename Collection::value_type::first_type& key) { | ||||
|   typename Collection::const_iterator it = collection.find(key); | ||||
|   if (it == collection.end()) { | ||||
|     return 0; | ||||
|   } | ||||
|   return &it->second; | ||||
| } | ||||
|  | ||||
| // Same as above but returns a pointer to the non-const value. | ||||
| template <class Collection> | ||||
| typename Collection::value_type::second_type* | ||||
| FindOrNull(Collection& collection,  // NOLINT | ||||
|            const typename Collection::value_type::first_type& key) { | ||||
|   typename Collection::iterator it = collection.find(key); | ||||
|   if (it == collection.end()) { | ||||
|     return 0; | ||||
|   } | ||||
|   return &it->second; | ||||
| } | ||||
|  | ||||
| // Returns the pointer value associated with the given key. If none is found, | ||||
| // nullptr is returned. The function is designed to be used with a map of keys to | ||||
| // pointers. | ||||
| // | ||||
| // This function does not distinguish between a missing key and a key mapped | ||||
| // to nullptr. | ||||
| template <class Collection> | ||||
| typename Collection::value_type::second_type | ||||
| FindPtrOrNull(const Collection& collection, | ||||
|               const typename Collection::value_type::first_type& key) { | ||||
|   typename Collection::const_iterator it = collection.find(key); | ||||
|   if (it == collection.end()) { | ||||
|     return typename Collection::value_type::second_type(); | ||||
|   } | ||||
|   return it->second; | ||||
| } | ||||
|  | ||||
| // Same as above, except takes non-const reference to collection. | ||||
| // | ||||
| // This function is needed for containers that propagate constness to the | ||||
| // pointee, such as boost::ptr_map. | ||||
| template <class Collection> | ||||
| typename Collection::value_type::second_type | ||||
| FindPtrOrNull(Collection& collection,  // NOLINT | ||||
|               const typename Collection::value_type::first_type& key) { | ||||
|   typename Collection::iterator it = collection.find(key); | ||||
|   if (it == collection.end()) { | ||||
|     return typename Collection::value_type::second_type(); | ||||
|   } | ||||
|   return it->second; | ||||
| } | ||||
|  | ||||
| // Finds the pointer value associated with the given key in a map whose values | ||||
| // are linked_ptrs. Returns nullptr if key is not found. | ||||
| template <class Collection> | ||||
| typename Collection::value_type::second_type::element_type* | ||||
| FindLinkedPtrOrNull(const Collection& collection, | ||||
|                     const typename Collection::value_type::first_type& key) { | ||||
|   typename Collection::const_iterator it = collection.find(key); | ||||
|   if (it == collection.end()) { | ||||
|     return 0; | ||||
|   } | ||||
|   // Since linked_ptr::get() is a const member returning a non const, | ||||
|   // we do not need a version of this function taking a non const collection. | ||||
|   return it->second.get(); | ||||
| } | ||||
|  | ||||
| // Same as above, but dies if the key is not found. | ||||
| template <class Collection> | ||||
| typename Collection::value_type::second_type::element_type& | ||||
| FindLinkedPtrOrDie(const Collection& collection, | ||||
|                    const typename Collection::value_type::first_type& key) { | ||||
|   typename Collection::const_iterator it = collection.find(key); | ||||
|   GOOGLE_CHECK(it != collection.end()) <<  "key not found: " << key; | ||||
|   // Since linked_ptr::operator*() is a const member returning a non const, | ||||
|   // we do not need a version of this function taking a non const collection. | ||||
|   return *it->second; | ||||
| } | ||||
|  | ||||
| // Finds the value associated with the given key and copies it to *value (if not | ||||
| // nullptr). Returns false if the key was not found, true otherwise. | ||||
| template <class Collection, class Key, class Value> | ||||
| bool FindCopy(const Collection& collection, | ||||
|               const Key& key, | ||||
|               Value* const value) { | ||||
|   typename Collection::const_iterator it = collection.find(key); | ||||
|   if (it == collection.end()) { | ||||
|     return false; | ||||
|   } | ||||
|   if (value) { | ||||
|     *value = it->second; | ||||
|   } | ||||
|   return true; | ||||
| } | ||||
|  | ||||
| // | ||||
| // Contains*() | ||||
| // | ||||
|  | ||||
| // Returns true if and only if the given collection contains the given key. | ||||
| template <class Collection, class Key> | ||||
| bool ContainsKey(const Collection& collection, const Key& key) { | ||||
|   return collection.find(key) != collection.end(); | ||||
| } | ||||
|  | ||||
| // Returns true if and only if the given collection contains the given key-value | ||||
| // pair. | ||||
| template <class Collection, class Key, class Value> | ||||
| bool ContainsKeyValuePair(const Collection& collection, | ||||
|                           const Key& key, | ||||
|                           const Value& value) { | ||||
|   typedef typename Collection::const_iterator const_iterator; | ||||
|   std::pair<const_iterator, const_iterator> range = collection.equal_range(key); | ||||
|   for (const_iterator it = range.first; it != range.second; ++it) { | ||||
|     if (it->second == value) { | ||||
|       return true; | ||||
|     } | ||||
|   } | ||||
|   return false; | ||||
| } | ||||
|  | ||||
| // | ||||
| // Insert*() | ||||
| // | ||||
|  | ||||
| // Inserts the given key-value pair into the collection. Returns true if and | ||||
| // only if the key from the given pair didn't previously exist. Otherwise, the | ||||
| // value in the map is replaced with the value from the given pair. | ||||
| template <class Collection> | ||||
| bool InsertOrUpdate(Collection* const collection, | ||||
|                     const typename Collection::value_type& vt) { | ||||
|   std::pair<typename Collection::iterator, bool> ret = collection->insert(vt); | ||||
|   if (!ret.second) { | ||||
|     // update | ||||
|     ret.first->second = vt.second; | ||||
|     return false; | ||||
|   } | ||||
|   return true; | ||||
| } | ||||
|  | ||||
| // Same as above, except that the key and value are passed separately. | ||||
| template <class Collection> | ||||
| bool InsertOrUpdate(Collection* const collection, | ||||
|                     const typename Collection::value_type::first_type& key, | ||||
|                     const typename Collection::value_type::second_type& value) { | ||||
|   return InsertOrUpdate( | ||||
|       collection, typename Collection::value_type(key, value)); | ||||
| } | ||||
|  | ||||
| // Inserts/updates all the key-value pairs from the range defined by the | ||||
| // iterators "first" and "last" into the given collection. | ||||
| template <class Collection, class InputIterator> | ||||
| void InsertOrUpdateMany(Collection* const collection, | ||||
|                         InputIterator first, InputIterator last) { | ||||
|   for (; first != last; ++first) { | ||||
|     InsertOrUpdate(collection, *first); | ||||
|   } | ||||
| } | ||||
|  | ||||
| // Change the value associated with a particular key in a map or hash_map | ||||
| // of the form map<Key, Value*> which owns the objects pointed to by the | ||||
| // value pointers.  If there was an existing value for the key, it is deleted. | ||||
| // True indicates an insert took place, false indicates an update + delete. | ||||
| template <class Collection> | ||||
| bool InsertAndDeleteExisting( | ||||
|     Collection* const collection, | ||||
|     const typename Collection::value_type::first_type& key, | ||||
|     const typename Collection::value_type::second_type& value) { | ||||
|   std::pair<typename Collection::iterator, bool> ret = | ||||
|       collection->insert(typename Collection::value_type(key, value)); | ||||
|   if (!ret.second) { | ||||
|     delete ret.first->second; | ||||
|     ret.first->second = value; | ||||
|     return false; | ||||
|   } | ||||
|   return true; | ||||
| } | ||||
|  | ||||
| // Inserts the given key and value into the given collection if and only if the | ||||
| // given key did NOT already exist in the collection. If the key previously | ||||
| // existed in the collection, the value is not changed. Returns true if the | ||||
| // key-value pair was inserted; returns false if the key was already present. | ||||
| template <class Collection> | ||||
| bool InsertIfNotPresent(Collection* const collection, | ||||
|                         const typename Collection::value_type& vt) { | ||||
|   return collection->insert(vt).second; | ||||
| } | ||||
|  | ||||
| // Same as above except the key and value are passed separately. | ||||
| template <class Collection> | ||||
| bool InsertIfNotPresent( | ||||
|     Collection* const collection, | ||||
|     const typename Collection::value_type::first_type& key, | ||||
|     const typename Collection::value_type::second_type& value) { | ||||
|   return InsertIfNotPresent( | ||||
|       collection, typename Collection::value_type(key, value)); | ||||
| } | ||||
|  | ||||
| // Same as above except dies if the key already exists in the collection. | ||||
| template <class Collection> | ||||
| void InsertOrDie(Collection* const collection, | ||||
|                  const typename Collection::value_type& value) { | ||||
|   GOOGLE_CHECK(InsertIfNotPresent(collection, value)) | ||||
|       << "duplicate value: " << value; | ||||
| } | ||||
|  | ||||
| // Same as above except doesn't log the value on error. | ||||
| template <class Collection> | ||||
| void InsertOrDieNoPrint(Collection* const collection, | ||||
|                         const typename Collection::value_type& value) { | ||||
|   GOOGLE_CHECK(InsertIfNotPresent(collection, value)) << "duplicate value."; | ||||
| } | ||||
|  | ||||
| // Inserts the key-value pair into the collection. Dies if key was already | ||||
| // present. | ||||
| template <class Collection> | ||||
| void InsertOrDie(Collection* const collection, | ||||
|                  const typename Collection::value_type::first_type& key, | ||||
|                  const typename Collection::value_type::second_type& data) { | ||||
|   GOOGLE_CHECK(InsertIfNotPresent(collection, key, data)) | ||||
|       << "duplicate key: " << key; | ||||
| } | ||||
|  | ||||
| // Same as above except doesn't log the key on error. | ||||
| template <class Collection> | ||||
| void InsertOrDieNoPrint( | ||||
|     Collection* const collection, | ||||
|     const typename Collection::value_type::first_type& key, | ||||
|     const typename Collection::value_type::second_type& data) { | ||||
|   GOOGLE_CHECK(InsertIfNotPresent(collection, key, data)) << "duplicate key."; | ||||
| } | ||||
|  | ||||
| // Inserts a new key and default-initialized value. Dies if the key was already | ||||
| // present. Returns a reference to the value. Example usage: | ||||
| // | ||||
| // map<int, SomeProto> m; | ||||
| // SomeProto& proto = InsertKeyOrDie(&m, 3); | ||||
| // proto.set_field("foo"); | ||||
| template <class Collection> | ||||
| typename Collection::value_type::second_type& InsertKeyOrDie( | ||||
|     Collection* const collection, | ||||
|     const typename Collection::value_type::first_type& key) { | ||||
|   typedef typename Collection::value_type value_type; | ||||
|   std::pair<typename Collection::iterator, bool> res = | ||||
|       collection->insert(value_type(key, typename value_type::second_type())); | ||||
|   GOOGLE_CHECK(res.second) << "duplicate key: " << key; | ||||
|   return res.first->second; | ||||
| } | ||||
|  | ||||
| // | ||||
| // Lookup*() | ||||
| // | ||||
|  | ||||
| // Looks up a given key and value pair in a collection and inserts the key-value | ||||
| // pair if it's not already present. Returns a reference to the value associated | ||||
| // with the key. | ||||
| template <class Collection> | ||||
| typename Collection::value_type::second_type& | ||||
| LookupOrInsert(Collection* const collection, | ||||
|                const typename Collection::value_type& vt) { | ||||
|   return collection->insert(vt).first->second; | ||||
| } | ||||
|  | ||||
| // Same as above except the key-value are passed separately. | ||||
| template <class Collection> | ||||
| typename Collection::value_type::second_type& | ||||
| LookupOrInsert(Collection* const collection, | ||||
|                const typename Collection::value_type::first_type& key, | ||||
|                const typename Collection::value_type::second_type& value) { | ||||
|   return LookupOrInsert( | ||||
|       collection, typename Collection::value_type(key, value)); | ||||
| } | ||||
|  | ||||
| // Counts the number of equivalent elements in the given "sequence", and stores | ||||
| // the results in "count_map" with element as the key and count as the value. | ||||
| // | ||||
| // Example: | ||||
| //   vector<string> v = {"a", "b", "c", "a", "b"}; | ||||
| //   map<string, int> m; | ||||
| //   AddTokenCounts(v, 1, &m); | ||||
| //   assert(m["a"] == 2); | ||||
| //   assert(m["b"] == 2); | ||||
| //   assert(m["c"] == 1); | ||||
| template <typename Sequence, typename Collection> | ||||
| void AddTokenCounts( | ||||
|     const Sequence& sequence, | ||||
|     const typename Collection::value_type::second_type& increment, | ||||
|     Collection* const count_map) { | ||||
|   for (typename Sequence::const_iterator it = sequence.begin(); | ||||
|        it != sequence.end(); ++it) { | ||||
|     typename Collection::value_type::second_type& value = | ||||
|         LookupOrInsert(count_map, *it, | ||||
|                        typename Collection::value_type::second_type()); | ||||
|     value += increment; | ||||
|   } | ||||
| } | ||||
|  | ||||
| // Returns a reference to the value associated with key. If not found, a value | ||||
| // is default constructed on the heap and added to the map. | ||||
| // | ||||
| // This function is useful for containers of the form map<Key, Value*>, where | ||||
| // inserting a new key, value pair involves constructing a new heap-allocated | ||||
| // Value, and storing a pointer to that in the collection. | ||||
| template <class Collection> | ||||
| typename Collection::value_type::second_type& | ||||
| LookupOrInsertNew(Collection* const collection, | ||||
|                   const typename Collection::value_type::first_type& key) { | ||||
|   typedef typename std::iterator_traits< | ||||
|     typename Collection::value_type::second_type>::value_type Element; | ||||
|   std::pair<typename Collection::iterator, bool> ret = | ||||
|       collection->insert(typename Collection::value_type( | ||||
|           key, | ||||
|           static_cast<typename Collection::value_type::second_type>(nullptr))); | ||||
|   if (ret.second) { | ||||
|     ret.first->second = new Element(); | ||||
|   } | ||||
|   return ret.first->second; | ||||
| } | ||||
|  | ||||
| // Same as above but constructs the value using the single-argument constructor | ||||
| // and the given "arg". | ||||
| template <class Collection, class Arg> | ||||
| typename Collection::value_type::second_type& | ||||
| LookupOrInsertNew(Collection* const collection, | ||||
|                   const typename Collection::value_type::first_type& key, | ||||
|                   const Arg& arg) { | ||||
|   typedef typename std::iterator_traits< | ||||
|     typename Collection::value_type::second_type>::value_type Element; | ||||
|   std::pair<typename Collection::iterator, bool> ret = | ||||
|       collection->insert(typename Collection::value_type( | ||||
|           key, | ||||
|           static_cast<typename Collection::value_type::second_type>(nullptr))); | ||||
|   if (ret.second) { | ||||
|     ret.first->second = new Element(arg); | ||||
|   } | ||||
|   return ret.first->second; | ||||
| } | ||||
|  | ||||
| // Lookup of linked/shared pointers is used in two scenarios: | ||||
| // | ||||
| // Use LookupOrInsertNewLinkedPtr if the container owns the elements. | ||||
| // In this case it is fine working with the raw pointer as long as it is | ||||
| // guaranteed that no other thread can delete/update an accessed element. | ||||
| // A mutex will need to lock the container operation as well as the use | ||||
| // of the returned elements. Finding an element may be performed using | ||||
| // FindLinkedPtr*(). | ||||
| // | ||||
| // Use LookupOrInsertNewSharedPtr if the container does not own the elements | ||||
| // for their whole lifetime. This is typically the case when a reader allows | ||||
| // parallel updates to the container. In this case a Mutex only needs to lock | ||||
| // container operations, but all element operations must be performed on the | ||||
| // shared pointer. Finding an element must be performed using FindPtr*() and | ||||
| // cannot be done with FindLinkedPtr*() even though it compiles. | ||||
|  | ||||
| // Lookup a key in a map or hash_map whose values are linked_ptrs.  If it is | ||||
| // missing, set collection[key].reset(new Value::element_type) and return that. | ||||
| // Value::element_type must be default constructable. | ||||
| template <class Collection> | ||||
| typename Collection::value_type::second_type::element_type* | ||||
| LookupOrInsertNewLinkedPtr( | ||||
|     Collection* const collection, | ||||
|     const typename Collection::value_type::first_type& key) { | ||||
|   typedef typename Collection::value_type::second_type Value; | ||||
|   std::pair<typename Collection::iterator, bool> ret = | ||||
|       collection->insert(typename Collection::value_type(key, Value())); | ||||
|   if (ret.second) { | ||||
|     ret.first->second.reset(new typename Value::element_type); | ||||
|   } | ||||
|   return ret.first->second.get(); | ||||
| } | ||||
|  | ||||
| // A variant of LookupOrInsertNewLinkedPtr where the value is constructed using | ||||
| // a single-parameter constructor.  Note: the constructor argument is computed | ||||
| // even if it will not be used, so only values cheap to compute should be passed | ||||
| // here.  On the other hand it does not matter how expensive the construction of | ||||
| // the actual stored value is, as that only occurs if necessary. | ||||
| template <class Collection, class Arg> | ||||
| typename Collection::value_type::second_type::element_type* | ||||
| LookupOrInsertNewLinkedPtr( | ||||
|     Collection* const collection, | ||||
|     const typename Collection::value_type::first_type& key, | ||||
|     const Arg& arg) { | ||||
|   typedef typename Collection::value_type::second_type Value; | ||||
|   std::pair<typename Collection::iterator, bool> ret = | ||||
|       collection->insert(typename Collection::value_type(key, Value())); | ||||
|   if (ret.second) { | ||||
|     ret.first->second.reset(new typename Value::element_type(arg)); | ||||
|   } | ||||
|   return ret.first->second.get(); | ||||
| } | ||||
|  | ||||
| // Lookup a key in a map or hash_map whose values are shared_ptrs.  If it is | ||||
| // missing, set collection[key].reset(new Value::element_type). Unlike | ||||
| // LookupOrInsertNewLinkedPtr, this function returns the shared_ptr instead of | ||||
| // the raw pointer. Value::element_type must be default constructable. | ||||
| template <class Collection> | ||||
| typename Collection::value_type::second_type& | ||||
| LookupOrInsertNewSharedPtr( | ||||
|     Collection* const collection, | ||||
|     const typename Collection::value_type::first_type& key) { | ||||
|   typedef typename Collection::value_type::second_type SharedPtr; | ||||
|   typedef typename Collection::value_type::second_type::element_type Element; | ||||
|   std::pair<typename Collection::iterator, bool> ret = | ||||
|       collection->insert(typename Collection::value_type(key, SharedPtr())); | ||||
|   if (ret.second) { | ||||
|     ret.first->second.reset(new Element()); | ||||
|   } | ||||
|   return ret.first->second; | ||||
| } | ||||
|  | ||||
| // A variant of LookupOrInsertNewSharedPtr where the value is constructed using | ||||
| // a single-parameter constructor.  Note: the constructor argument is computed | ||||
| // even if it will not be used, so only values cheap to compute should be passed | ||||
| // here.  On the other hand it does not matter how expensive the construction of | ||||
| // the actual stored value is, as that only occurs if necessary. | ||||
| template <class Collection, class Arg> | ||||
| typename Collection::value_type::second_type& | ||||
| LookupOrInsertNewSharedPtr( | ||||
|     Collection* const collection, | ||||
|     const typename Collection::value_type::first_type& key, | ||||
|     const Arg& arg) { | ||||
|   typedef typename Collection::value_type::second_type SharedPtr; | ||||
|   typedef typename Collection::value_type::second_type::element_type Element; | ||||
|   std::pair<typename Collection::iterator, bool> ret = | ||||
|       collection->insert(typename Collection::value_type(key, SharedPtr())); | ||||
|   if (ret.second) { | ||||
|     ret.first->second.reset(new Element(arg)); | ||||
|   } | ||||
|   return ret.first->second; | ||||
| } | ||||
|  | ||||
| // | ||||
| // Misc Utility Functions | ||||
| // | ||||
|  | ||||
| // Updates the value associated with the given key. If the key was not already | ||||
| // present, then the key-value pair are inserted and "previous" is unchanged. If | ||||
| // the key was already present, the value is updated and "*previous" will | ||||
| // contain a copy of the old value. | ||||
| // | ||||
| // InsertOrReturnExisting has complementary behavior that returns the | ||||
| // address of an already existing value, rather than updating it. | ||||
| template <class Collection> | ||||
| bool UpdateReturnCopy(Collection* const collection, | ||||
|                       const typename Collection::value_type::first_type& key, | ||||
|                       const typename Collection::value_type::second_type& value, | ||||
|                       typename Collection::value_type::second_type* previous) { | ||||
|   std::pair<typename Collection::iterator, bool> ret = | ||||
|       collection->insert(typename Collection::value_type(key, value)); | ||||
|   if (!ret.second) { | ||||
|     // update | ||||
|     if (previous) { | ||||
|       *previous = ret.first->second; | ||||
|     } | ||||
|     ret.first->second = value; | ||||
|     return true; | ||||
|   } | ||||
|   return false; | ||||
| } | ||||
|  | ||||
| // Same as above except that the key and value are passed as a pair. | ||||
| template <class Collection> | ||||
| bool UpdateReturnCopy(Collection* const collection, | ||||
|                       const typename Collection::value_type& vt, | ||||
|                       typename Collection::value_type::second_type* previous) { | ||||
|   std::pair<typename Collection::iterator, bool> ret = collection->insert(vt); | ||||
|   if (!ret.second) { | ||||
|     // update | ||||
|     if (previous) { | ||||
|       *previous = ret.first->second; | ||||
|     } | ||||
|     ret.first->second = vt.second; | ||||
|     return true; | ||||
|   } | ||||
|   return false; | ||||
| } | ||||
|  | ||||
| // Tries to insert the given key-value pair into the collection. Returns nullptr if | ||||
| // the insert succeeds. Otherwise, returns a pointer to the existing value. | ||||
| // | ||||
| // This complements UpdateReturnCopy in that it allows to update only after | ||||
| // verifying the old value and still insert quickly without having to look up | ||||
| // twice. Unlike UpdateReturnCopy this also does not come with the issue of an | ||||
| // undefined previous* in case new data was inserted. | ||||
| template <class Collection> | ||||
| typename Collection::value_type::second_type* InsertOrReturnExisting( | ||||
|     Collection* const collection, const typename Collection::value_type& vt) { | ||||
|   std::pair<typename Collection::iterator, bool> ret = collection->insert(vt); | ||||
|   if (ret.second) { | ||||
|     return nullptr;  // Inserted, no existing previous value. | ||||
|   } else { | ||||
|     return &ret.first->second;  // Return address of already existing value. | ||||
|   } | ||||
| } | ||||
|  | ||||
| // Same as above, except for explicit key and data. | ||||
| template <class Collection> | ||||
| typename Collection::value_type::second_type* InsertOrReturnExisting( | ||||
|     Collection* const collection, | ||||
|     const typename Collection::value_type::first_type& key, | ||||
|     const typename Collection::value_type::second_type& data) { | ||||
|   return InsertOrReturnExisting(collection, | ||||
|                                 typename Collection::value_type(key, data)); | ||||
| } | ||||
|  | ||||
| // Erases the collection item identified by the given key, and returns the value | ||||
| // associated with that key. It is assumed that the value (i.e., the | ||||
| // mapped_type) is a pointer. Returns nullptr if the key was not found in the | ||||
| // collection. | ||||
| // | ||||
| // Examples: | ||||
| //   map<string, MyType*> my_map; | ||||
| // | ||||
| // One line cleanup: | ||||
| //     delete EraseKeyReturnValuePtr(&my_map, "abc"); | ||||
| // | ||||
| // Use returned value: | ||||
| //     std::unique_ptr<MyType> value_ptr( | ||||
| //         EraseKeyReturnValuePtr(&my_map, "abc")); | ||||
| //     if (value_ptr.get()) | ||||
| //       value_ptr->DoSomething(); | ||||
| // | ||||
| template <class Collection> | ||||
| typename Collection::value_type::second_type EraseKeyReturnValuePtr( | ||||
|     Collection* const collection, | ||||
|     const typename Collection::value_type::first_type& key) { | ||||
|   typename Collection::iterator it = collection->find(key); | ||||
|   if (it == collection->end()) { | ||||
|     return nullptr; | ||||
|   } | ||||
|   typename Collection::value_type::second_type v = it->second; | ||||
|   collection->erase(it); | ||||
|   return v; | ||||
| } | ||||
|  | ||||
| // Inserts all the keys from map_container into key_container, which must | ||||
| // support insert(MapContainer::key_type). | ||||
| // | ||||
| // Note: any initial contents of the key_container are not cleared. | ||||
| template <class MapContainer, class KeyContainer> | ||||
| void InsertKeysFromMap(const MapContainer& map_container, | ||||
|                        KeyContainer* key_container) { | ||||
|   GOOGLE_CHECK(key_container != nullptr); | ||||
|   for (typename MapContainer::const_iterator it = map_container.begin(); | ||||
|        it != map_container.end(); ++it) { | ||||
|     key_container->insert(it->first); | ||||
|   } | ||||
| } | ||||
|  | ||||
| // Appends all the keys from map_container into key_container, which must | ||||
| // support push_back(MapContainer::key_type). | ||||
| // | ||||
| // Note: any initial contents of the key_container are not cleared. | ||||
| template <class MapContainer, class KeyContainer> | ||||
| void AppendKeysFromMap(const MapContainer& map_container, | ||||
|                        KeyContainer* key_container) { | ||||
|   GOOGLE_CHECK(key_container != nullptr); | ||||
|   for (typename MapContainer::const_iterator it = map_container.begin(); | ||||
|        it != map_container.end(); ++it) { | ||||
|     key_container->push_back(it->first); | ||||
|   } | ||||
| } | ||||
|  | ||||
| // A more specialized overload of AppendKeysFromMap to optimize reallocations | ||||
| // for the common case in which we're appending keys to a vector and hence can | ||||
| // (and sometimes should) call reserve() first. | ||||
| // | ||||
| // (It would be possible to play SFINAE games to call reserve() for any | ||||
| // container that supports it, but this seems to get us 99% of what we need | ||||
| // without the complexity of a SFINAE-based solution.) | ||||
| template <class MapContainer, class KeyType> | ||||
| void AppendKeysFromMap(const MapContainer& map_container, | ||||
|                        std::vector<KeyType>* key_container) { | ||||
|   GOOGLE_CHECK(key_container != nullptr); | ||||
|   // We now have the opportunity to call reserve(). Calling reserve() every | ||||
|   // time is a bad idea for some use cases: libstdc++'s implementation of | ||||
|   // vector<>::reserve() resizes the vector's backing store to exactly the | ||||
|   // given size (unless it's already at least that big). Because of this, | ||||
|   // the use case that involves appending a lot of small maps (total size | ||||
|   // N) one by one to a vector would be O(N^2). But never calling reserve() | ||||
|   // loses the opportunity to improve the use case of adding from a large | ||||
|   // map to an empty vector (this improves performance by up to 33%). A | ||||
|   // number of heuristics are possible; see the discussion in | ||||
|   // cl/34081696. Here we use the simplest one. | ||||
|   if (key_container->empty()) { | ||||
|     key_container->reserve(map_container.size()); | ||||
|   } | ||||
|   for (typename MapContainer::const_iterator it = map_container.begin(); | ||||
|        it != map_container.end(); ++it) { | ||||
|     key_container->push_back(it->first); | ||||
|   } | ||||
| } | ||||
|  | ||||
| // Inserts all the values from map_container into value_container, which must | ||||
| // support push_back(MapContainer::mapped_type). | ||||
| // | ||||
| // Note: any initial contents of the value_container are not cleared. | ||||
| template <class MapContainer, class ValueContainer> | ||||
| void AppendValuesFromMap(const MapContainer& map_container, | ||||
|                          ValueContainer* value_container) { | ||||
|   GOOGLE_CHECK(value_container != nullptr); | ||||
|   for (typename MapContainer::const_iterator it = map_container.begin(); | ||||
|        it != map_container.end(); ++it) { | ||||
|     value_container->push_back(it->second); | ||||
|   } | ||||
| } | ||||
|  | ||||
| // A more specialized overload of AppendValuesFromMap to optimize reallocations | ||||
| // for the common case in which we're appending values to a vector and hence | ||||
| // can (and sometimes should) call reserve() first. | ||||
| // | ||||
| // (It would be possible to play SFINAE games to call reserve() for any | ||||
| // container that supports it, but this seems to get us 99% of what we need | ||||
| // without the complexity of a SFINAE-based solution.) | ||||
| template <class MapContainer, class ValueType> | ||||
| void AppendValuesFromMap(const MapContainer& map_container, | ||||
|                          std::vector<ValueType>* value_container) { | ||||
|   GOOGLE_CHECK(value_container != nullptr); | ||||
|   // See AppendKeysFromMap for why this is done. | ||||
|   if (value_container->empty()) { | ||||
|     value_container->reserve(map_container.size()); | ||||
|   } | ||||
|   for (typename MapContainer::const_iterator it = map_container.begin(); | ||||
|        it != map_container.end(); ++it) { | ||||
|     value_container->push_back(it->second); | ||||
|   } | ||||
| } | ||||
|  | ||||
| }  // namespace protobuf | ||||
| }  // namespace google | ||||
|  | ||||
| #endif  // GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__ | ||||
		Reference in New Issue
	
	Block a user