add Eigen as a dependency
This commit is contained in:
507
external/include/eigen3/unsupported/Eigen/src/Splines/Spline.h
vendored
Normal file
507
external/include/eigen3/unsupported/Eigen/src/Splines/Spline.h
vendored
Normal file
@@ -0,0 +1,507 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 20010-2011 Hauke Heibel <hauke.heibel@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SPLINE_H
|
||||
#define EIGEN_SPLINE_H
|
||||
|
||||
#include "SplineFwd.h"
|
||||
|
||||
namespace Eigen
|
||||
{
|
||||
/**
|
||||
* \ingroup Splines_Module
|
||||
* \class Spline
|
||||
* \brief A class representing multi-dimensional spline curves.
|
||||
*
|
||||
* The class represents B-splines with non-uniform knot vectors. Each control
|
||||
* point of the B-spline is associated with a basis function
|
||||
* \f{align*}
|
||||
* C(u) & = \sum_{i=0}^{n}N_{i,p}(u)P_i
|
||||
* \f}
|
||||
*
|
||||
* \tparam _Scalar The underlying data type (typically float or double)
|
||||
* \tparam _Dim The curve dimension (e.g. 2 or 3)
|
||||
* \tparam _Degree Per default set to Dynamic; could be set to the actual desired
|
||||
* degree for optimization purposes (would result in stack allocation
|
||||
* of several temporary variables).
|
||||
**/
|
||||
template <typename _Scalar, int _Dim, int _Degree>
|
||||
class Spline
|
||||
{
|
||||
public:
|
||||
typedef _Scalar Scalar; /*!< The spline curve's scalar type. */
|
||||
enum { Dimension = _Dim /*!< The spline curve's dimension. */ };
|
||||
enum { Degree = _Degree /*!< The spline curve's degree. */ };
|
||||
|
||||
/** \brief The point type the spline is representing. */
|
||||
typedef typename SplineTraits<Spline>::PointType PointType;
|
||||
|
||||
/** \brief The data type used to store knot vectors. */
|
||||
typedef typename SplineTraits<Spline>::KnotVectorType KnotVectorType;
|
||||
|
||||
/** \brief The data type used to store parameter vectors. */
|
||||
typedef typename SplineTraits<Spline>::ParameterVectorType ParameterVectorType;
|
||||
|
||||
/** \brief The data type used to store non-zero basis functions. */
|
||||
typedef typename SplineTraits<Spline>::BasisVectorType BasisVectorType;
|
||||
|
||||
/** \brief The data type used to store the values of the basis function derivatives. */
|
||||
typedef typename SplineTraits<Spline>::BasisDerivativeType BasisDerivativeType;
|
||||
|
||||
/** \brief The data type representing the spline's control points. */
|
||||
typedef typename SplineTraits<Spline>::ControlPointVectorType ControlPointVectorType;
|
||||
|
||||
/**
|
||||
* \brief Creates a (constant) zero spline.
|
||||
* For Splines with dynamic degree, the resulting degree will be 0.
|
||||
**/
|
||||
Spline()
|
||||
: m_knots(1, (Degree==Dynamic ? 2 : 2*Degree+2))
|
||||
, m_ctrls(ControlPointVectorType::Zero(Dimension,(Degree==Dynamic ? 1 : Degree+1)))
|
||||
{
|
||||
// in theory this code can go to the initializer list but it will get pretty
|
||||
// much unreadable ...
|
||||
enum { MinDegree = (Degree==Dynamic ? 0 : Degree) };
|
||||
m_knots.template segment<MinDegree+1>(0) = Array<Scalar,1,MinDegree+1>::Zero();
|
||||
m_knots.template segment<MinDegree+1>(MinDegree+1) = Array<Scalar,1,MinDegree+1>::Ones();
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Creates a spline from a knot vector and control points.
|
||||
* \param knots The spline's knot vector.
|
||||
* \param ctrls The spline's control point vector.
|
||||
**/
|
||||
template <typename OtherVectorType, typename OtherArrayType>
|
||||
Spline(const OtherVectorType& knots, const OtherArrayType& ctrls) : m_knots(knots), m_ctrls(ctrls) {}
|
||||
|
||||
/**
|
||||
* \brief Copy constructor for splines.
|
||||
* \param spline The input spline.
|
||||
**/
|
||||
template <int OtherDegree>
|
||||
Spline(const Spline<Scalar, Dimension, OtherDegree>& spline) :
|
||||
m_knots(spline.knots()), m_ctrls(spline.ctrls()) {}
|
||||
|
||||
/**
|
||||
* \brief Returns the knots of the underlying spline.
|
||||
**/
|
||||
const KnotVectorType& knots() const { return m_knots; }
|
||||
|
||||
/**
|
||||
* \brief Returns the ctrls of the underlying spline.
|
||||
**/
|
||||
const ControlPointVectorType& ctrls() const { return m_ctrls; }
|
||||
|
||||
/**
|
||||
* \brief Returns the spline value at a given site \f$u\f$.
|
||||
*
|
||||
* The function returns
|
||||
* \f{align*}
|
||||
* C(u) & = \sum_{i=0}^{n}N_{i,p}P_i
|
||||
* \f}
|
||||
*
|
||||
* \param u Parameter \f$u \in [0;1]\f$ at which the spline is evaluated.
|
||||
* \return The spline value at the given location \f$u\f$.
|
||||
**/
|
||||
PointType operator()(Scalar u) const;
|
||||
|
||||
/**
|
||||
* \brief Evaluation of spline derivatives of up-to given order.
|
||||
*
|
||||
* The function returns
|
||||
* \f{align*}
|
||||
* \frac{d^i}{du^i}C(u) & = \sum_{i=0}^{n} \frac{d^i}{du^i} N_{i,p}(u)P_i
|
||||
* \f}
|
||||
* for i ranging between 0 and order.
|
||||
*
|
||||
* \param u Parameter \f$u \in [0;1]\f$ at which the spline derivative is evaluated.
|
||||
* \param order The order up to which the derivatives are computed.
|
||||
**/
|
||||
typename SplineTraits<Spline>::DerivativeType
|
||||
derivatives(Scalar u, DenseIndex order) const;
|
||||
|
||||
/**
|
||||
* \copydoc Spline::derivatives
|
||||
* Using the template version of this function is more efficieent since
|
||||
* temporary objects are allocated on the stack whenever this is possible.
|
||||
**/
|
||||
template <int DerivativeOrder>
|
||||
typename SplineTraits<Spline,DerivativeOrder>::DerivativeType
|
||||
derivatives(Scalar u, DenseIndex order = DerivativeOrder) const;
|
||||
|
||||
/**
|
||||
* \brief Computes the non-zero basis functions at the given site.
|
||||
*
|
||||
* Splines have local support and a point from their image is defined
|
||||
* by exactly \f$p+1\f$ control points \f$P_i\f$ where \f$p\f$ is the
|
||||
* spline degree.
|
||||
*
|
||||
* This function computes the \f$p+1\f$ non-zero basis function values
|
||||
* for a given parameter value \f$u\f$. It returns
|
||||
* \f{align*}{
|
||||
* N_{i,p}(u), \hdots, N_{i+p+1,p}(u)
|
||||
* \f}
|
||||
*
|
||||
* \param u Parameter \f$u \in [0;1]\f$ at which the non-zero basis functions
|
||||
* are computed.
|
||||
**/
|
||||
typename SplineTraits<Spline>::BasisVectorType
|
||||
basisFunctions(Scalar u) const;
|
||||
|
||||
/**
|
||||
* \brief Computes the non-zero spline basis function derivatives up to given order.
|
||||
*
|
||||
* The function computes
|
||||
* \f{align*}{
|
||||
* \frac{d^i}{du^i} N_{i,p}(u), \hdots, \frac{d^i}{du^i} N_{i+p+1,p}(u)
|
||||
* \f}
|
||||
* with i ranging from 0 up to the specified order.
|
||||
*
|
||||
* \param u Parameter \f$u \in [0;1]\f$ at which the non-zero basis function
|
||||
* derivatives are computed.
|
||||
* \param order The order up to which the basis function derivatives are computes.
|
||||
**/
|
||||
typename SplineTraits<Spline>::BasisDerivativeType
|
||||
basisFunctionDerivatives(Scalar u, DenseIndex order) const;
|
||||
|
||||
/**
|
||||
* \copydoc Spline::basisFunctionDerivatives
|
||||
* Using the template version of this function is more efficieent since
|
||||
* temporary objects are allocated on the stack whenever this is possible.
|
||||
**/
|
||||
template <int DerivativeOrder>
|
||||
typename SplineTraits<Spline,DerivativeOrder>::BasisDerivativeType
|
||||
basisFunctionDerivatives(Scalar u, DenseIndex order = DerivativeOrder) const;
|
||||
|
||||
/**
|
||||
* \brief Returns the spline degree.
|
||||
**/
|
||||
DenseIndex degree() const;
|
||||
|
||||
/**
|
||||
* \brief Returns the span within the knot vector in which u is falling.
|
||||
* \param u The site for which the span is determined.
|
||||
**/
|
||||
DenseIndex span(Scalar u) const;
|
||||
|
||||
/**
|
||||
* \brief Computes the spang within the provided knot vector in which u is falling.
|
||||
**/
|
||||
static DenseIndex Span(typename SplineTraits<Spline>::Scalar u, DenseIndex degree, const typename SplineTraits<Spline>::KnotVectorType& knots);
|
||||
|
||||
/**
|
||||
* \brief Returns the spline's non-zero basis functions.
|
||||
*
|
||||
* The function computes and returns
|
||||
* \f{align*}{
|
||||
* N_{i,p}(u), \hdots, N_{i+p+1,p}(u)
|
||||
* \f}
|
||||
*
|
||||
* \param u The site at which the basis functions are computed.
|
||||
* \param degree The degree of the underlying spline.
|
||||
* \param knots The underlying spline's knot vector.
|
||||
**/
|
||||
static BasisVectorType BasisFunctions(Scalar u, DenseIndex degree, const KnotVectorType& knots);
|
||||
|
||||
/**
|
||||
* \copydoc Spline::basisFunctionDerivatives
|
||||
* \param degree The degree of the underlying spline
|
||||
* \param knots The underlying spline's knot vector.
|
||||
**/
|
||||
static BasisDerivativeType BasisFunctionDerivatives(
|
||||
const Scalar u, const DenseIndex order, const DenseIndex degree, const KnotVectorType& knots);
|
||||
|
||||
private:
|
||||
KnotVectorType m_knots; /*!< Knot vector. */
|
||||
ControlPointVectorType m_ctrls; /*!< Control points. */
|
||||
|
||||
template <typename DerivativeType>
|
||||
static void BasisFunctionDerivativesImpl(
|
||||
const typename Spline<_Scalar, _Dim, _Degree>::Scalar u,
|
||||
const DenseIndex order,
|
||||
const DenseIndex p,
|
||||
const typename Spline<_Scalar, _Dim, _Degree>::KnotVectorType& U,
|
||||
DerivativeType& N_);
|
||||
};
|
||||
|
||||
template <typename _Scalar, int _Dim, int _Degree>
|
||||
DenseIndex Spline<_Scalar, _Dim, _Degree>::Span(
|
||||
typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::Scalar u,
|
||||
DenseIndex degree,
|
||||
const typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::KnotVectorType& knots)
|
||||
{
|
||||
// Piegl & Tiller, "The NURBS Book", A2.1 (p. 68)
|
||||
if (u <= knots(0)) return degree;
|
||||
const Scalar* pos = std::upper_bound(knots.data()+degree-1, knots.data()+knots.size()-degree-1, u);
|
||||
return static_cast<DenseIndex>( std::distance(knots.data(), pos) - 1 );
|
||||
}
|
||||
|
||||
template <typename _Scalar, int _Dim, int _Degree>
|
||||
typename Spline<_Scalar, _Dim, _Degree>::BasisVectorType
|
||||
Spline<_Scalar, _Dim, _Degree>::BasisFunctions(
|
||||
typename Spline<_Scalar, _Dim, _Degree>::Scalar u,
|
||||
DenseIndex degree,
|
||||
const typename Spline<_Scalar, _Dim, _Degree>::KnotVectorType& knots)
|
||||
{
|
||||
const DenseIndex p = degree;
|
||||
const DenseIndex i = Spline::Span(u, degree, knots);
|
||||
|
||||
const KnotVectorType& U = knots;
|
||||
|
||||
BasisVectorType left(p+1); left(0) = Scalar(0);
|
||||
BasisVectorType right(p+1); right(0) = Scalar(0);
|
||||
|
||||
VectorBlock<BasisVectorType,Degree>(left,1,p) = u - VectorBlock<const KnotVectorType,Degree>(U,i+1-p,p).reverse();
|
||||
VectorBlock<BasisVectorType,Degree>(right,1,p) = VectorBlock<const KnotVectorType,Degree>(U,i+1,p) - u;
|
||||
|
||||
BasisVectorType N(1,p+1);
|
||||
N(0) = Scalar(1);
|
||||
for (DenseIndex j=1; j<=p; ++j)
|
||||
{
|
||||
Scalar saved = Scalar(0);
|
||||
for (DenseIndex r=0; r<j; r++)
|
||||
{
|
||||
const Scalar tmp = N(r)/(right(r+1)+left(j-r));
|
||||
N[r] = saved + right(r+1)*tmp;
|
||||
saved = left(j-r)*tmp;
|
||||
}
|
||||
N(j) = saved;
|
||||
}
|
||||
return N;
|
||||
}
|
||||
|
||||
template <typename _Scalar, int _Dim, int _Degree>
|
||||
DenseIndex Spline<_Scalar, _Dim, _Degree>::degree() const
|
||||
{
|
||||
if (_Degree == Dynamic)
|
||||
return m_knots.size() - m_ctrls.cols() - 1;
|
||||
else
|
||||
return _Degree;
|
||||
}
|
||||
|
||||
template <typename _Scalar, int _Dim, int _Degree>
|
||||
DenseIndex Spline<_Scalar, _Dim, _Degree>::span(Scalar u) const
|
||||
{
|
||||
return Spline::Span(u, degree(), knots());
|
||||
}
|
||||
|
||||
template <typename _Scalar, int _Dim, int _Degree>
|
||||
typename Spline<_Scalar, _Dim, _Degree>::PointType Spline<_Scalar, _Dim, _Degree>::operator()(Scalar u) const
|
||||
{
|
||||
enum { Order = SplineTraits<Spline>::OrderAtCompileTime };
|
||||
|
||||
const DenseIndex span = this->span(u);
|
||||
const DenseIndex p = degree();
|
||||
const BasisVectorType basis_funcs = basisFunctions(u);
|
||||
|
||||
const Replicate<BasisVectorType,Dimension,1> ctrl_weights(basis_funcs);
|
||||
const Block<const ControlPointVectorType,Dimension,Order> ctrl_pts(ctrls(),0,span-p,Dimension,p+1);
|
||||
return (ctrl_weights * ctrl_pts).rowwise().sum();
|
||||
}
|
||||
|
||||
/* --------------------------------------------------------------------------------------------- */
|
||||
|
||||
template <typename SplineType, typename DerivativeType>
|
||||
void derivativesImpl(const SplineType& spline, typename SplineType::Scalar u, DenseIndex order, DerivativeType& der)
|
||||
{
|
||||
enum { Dimension = SplineTraits<SplineType>::Dimension };
|
||||
enum { Order = SplineTraits<SplineType>::OrderAtCompileTime };
|
||||
enum { DerivativeOrder = DerivativeType::ColsAtCompileTime };
|
||||
|
||||
typedef typename SplineTraits<SplineType>::ControlPointVectorType ControlPointVectorType;
|
||||
typedef typename SplineTraits<SplineType,DerivativeOrder>::BasisDerivativeType BasisDerivativeType;
|
||||
typedef typename BasisDerivativeType::ConstRowXpr BasisDerivativeRowXpr;
|
||||
|
||||
const DenseIndex p = spline.degree();
|
||||
const DenseIndex span = spline.span(u);
|
||||
|
||||
const DenseIndex n = (std::min)(p, order);
|
||||
|
||||
der.resize(Dimension,n+1);
|
||||
|
||||
// Retrieve the basis function derivatives up to the desired order...
|
||||
const BasisDerivativeType basis_func_ders = spline.template basisFunctionDerivatives<DerivativeOrder>(u, n+1);
|
||||
|
||||
// ... and perform the linear combinations of the control points.
|
||||
for (DenseIndex der_order=0; der_order<n+1; ++der_order)
|
||||
{
|
||||
const Replicate<BasisDerivativeRowXpr,Dimension,1> ctrl_weights( basis_func_ders.row(der_order) );
|
||||
const Block<const ControlPointVectorType,Dimension,Order> ctrl_pts(spline.ctrls(),0,span-p,Dimension,p+1);
|
||||
der.col(der_order) = (ctrl_weights * ctrl_pts).rowwise().sum();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename _Scalar, int _Dim, int _Degree>
|
||||
typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::DerivativeType
|
||||
Spline<_Scalar, _Dim, _Degree>::derivatives(Scalar u, DenseIndex order) const
|
||||
{
|
||||
typename SplineTraits< Spline >::DerivativeType res;
|
||||
derivativesImpl(*this, u, order, res);
|
||||
return res;
|
||||
}
|
||||
|
||||
template <typename _Scalar, int _Dim, int _Degree>
|
||||
template <int DerivativeOrder>
|
||||
typename SplineTraits< Spline<_Scalar, _Dim, _Degree>, DerivativeOrder >::DerivativeType
|
||||
Spline<_Scalar, _Dim, _Degree>::derivatives(Scalar u, DenseIndex order) const
|
||||
{
|
||||
typename SplineTraits< Spline, DerivativeOrder >::DerivativeType res;
|
||||
derivativesImpl(*this, u, order, res);
|
||||
return res;
|
||||
}
|
||||
|
||||
template <typename _Scalar, int _Dim, int _Degree>
|
||||
typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::BasisVectorType
|
||||
Spline<_Scalar, _Dim, _Degree>::basisFunctions(Scalar u) const
|
||||
{
|
||||
return Spline::BasisFunctions(u, degree(), knots());
|
||||
}
|
||||
|
||||
/* --------------------------------------------------------------------------------------------- */
|
||||
|
||||
|
||||
template <typename _Scalar, int _Dim, int _Degree>
|
||||
template <typename DerivativeType>
|
||||
void Spline<_Scalar, _Dim, _Degree>::BasisFunctionDerivativesImpl(
|
||||
const typename Spline<_Scalar, _Dim, _Degree>::Scalar u,
|
||||
const DenseIndex order,
|
||||
const DenseIndex p,
|
||||
const typename Spline<_Scalar, _Dim, _Degree>::KnotVectorType& U,
|
||||
DerivativeType& N_)
|
||||
{
|
||||
typedef Spline<_Scalar, _Dim, _Degree> SplineType;
|
||||
enum { Order = SplineTraits<SplineType>::OrderAtCompileTime };
|
||||
|
||||
const DenseIndex span = SplineType::Span(u, p, U);
|
||||
|
||||
const DenseIndex n = (std::min)(p, order);
|
||||
|
||||
N_.resize(n+1, p+1);
|
||||
|
||||
BasisVectorType left = BasisVectorType::Zero(p+1);
|
||||
BasisVectorType right = BasisVectorType::Zero(p+1);
|
||||
|
||||
Matrix<Scalar,Order,Order> ndu(p+1,p+1);
|
||||
|
||||
Scalar saved, temp; // FIXME These were double instead of Scalar. Was there a reason for that?
|
||||
|
||||
ndu(0,0) = 1.0;
|
||||
|
||||
DenseIndex j;
|
||||
for (j=1; j<=p; ++j)
|
||||
{
|
||||
left[j] = u-U[span+1-j];
|
||||
right[j] = U[span+j]-u;
|
||||
saved = 0.0;
|
||||
|
||||
for (DenseIndex r=0; r<j; ++r)
|
||||
{
|
||||
/* Lower triangle */
|
||||
ndu(j,r) = right[r+1]+left[j-r];
|
||||
temp = ndu(r,j-1)/ndu(j,r);
|
||||
/* Upper triangle */
|
||||
ndu(r,j) = static_cast<Scalar>(saved+right[r+1] * temp);
|
||||
saved = left[j-r] * temp;
|
||||
}
|
||||
|
||||
ndu(j,j) = static_cast<Scalar>(saved);
|
||||
}
|
||||
|
||||
for (j = p; j>=0; --j)
|
||||
N_(0,j) = ndu(j,p);
|
||||
|
||||
// Compute the derivatives
|
||||
DerivativeType a(n+1,p+1);
|
||||
DenseIndex r=0;
|
||||
for (; r<=p; ++r)
|
||||
{
|
||||
DenseIndex s1,s2;
|
||||
s1 = 0; s2 = 1; // alternate rows in array a
|
||||
a(0,0) = 1.0;
|
||||
|
||||
// Compute the k-th derivative
|
||||
for (DenseIndex k=1; k<=static_cast<DenseIndex>(n); ++k)
|
||||
{
|
||||
Scalar d = 0.0;
|
||||
DenseIndex rk,pk,j1,j2;
|
||||
rk = r-k; pk = p-k;
|
||||
|
||||
if (r>=k)
|
||||
{
|
||||
a(s2,0) = a(s1,0)/ndu(pk+1,rk);
|
||||
d = a(s2,0)*ndu(rk,pk);
|
||||
}
|
||||
|
||||
if (rk>=-1) j1 = 1;
|
||||
else j1 = -rk;
|
||||
|
||||
if (r-1 <= pk) j2 = k-1;
|
||||
else j2 = p-r;
|
||||
|
||||
for (j=j1; j<=j2; ++j)
|
||||
{
|
||||
a(s2,j) = (a(s1,j)-a(s1,j-1))/ndu(pk+1,rk+j);
|
||||
d += a(s2,j)*ndu(rk+j,pk);
|
||||
}
|
||||
|
||||
if (r<=pk)
|
||||
{
|
||||
a(s2,k) = -a(s1,k-1)/ndu(pk+1,r);
|
||||
d += a(s2,k)*ndu(r,pk);
|
||||
}
|
||||
|
||||
N_(k,r) = static_cast<Scalar>(d);
|
||||
j = s1; s1 = s2; s2 = j; // Switch rows
|
||||
}
|
||||
}
|
||||
|
||||
/* Multiply through by the correct factors */
|
||||
/* (Eq. [2.9]) */
|
||||
r = p;
|
||||
for (DenseIndex k=1; k<=static_cast<DenseIndex>(n); ++k)
|
||||
{
|
||||
for (j=p; j>=0; --j) N_(k,j) *= r;
|
||||
r *= p-k;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename _Scalar, int _Dim, int _Degree>
|
||||
typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::BasisDerivativeType
|
||||
Spline<_Scalar, _Dim, _Degree>::basisFunctionDerivatives(Scalar u, DenseIndex order) const
|
||||
{
|
||||
typename SplineTraits<Spline<_Scalar, _Dim, _Degree> >::BasisDerivativeType der;
|
||||
BasisFunctionDerivativesImpl(u, order, degree(), knots(), der);
|
||||
return der;
|
||||
}
|
||||
|
||||
template <typename _Scalar, int _Dim, int _Degree>
|
||||
template <int DerivativeOrder>
|
||||
typename SplineTraits< Spline<_Scalar, _Dim, _Degree>, DerivativeOrder >::BasisDerivativeType
|
||||
Spline<_Scalar, _Dim, _Degree>::basisFunctionDerivatives(Scalar u, DenseIndex order) const
|
||||
{
|
||||
typename SplineTraits< Spline<_Scalar, _Dim, _Degree>, DerivativeOrder >::BasisDerivativeType der;
|
||||
BasisFunctionDerivativesImpl(u, order, degree(), knots(), der);
|
||||
return der;
|
||||
}
|
||||
|
||||
template <typename _Scalar, int _Dim, int _Degree>
|
||||
typename SplineTraits<Spline<_Scalar, _Dim, _Degree> >::BasisDerivativeType
|
||||
Spline<_Scalar, _Dim, _Degree>::BasisFunctionDerivatives(
|
||||
const typename Spline<_Scalar, _Dim, _Degree>::Scalar u,
|
||||
const DenseIndex order,
|
||||
const DenseIndex degree,
|
||||
const typename Spline<_Scalar, _Dim, _Degree>::KnotVectorType& knots)
|
||||
{
|
||||
typename SplineTraits<Spline>::BasisDerivativeType der;
|
||||
BasisFunctionDerivativesImpl(u, order, degree, knots, der);
|
||||
return der;
|
||||
}
|
||||
}
|
||||
|
||||
#endif // EIGEN_SPLINE_H
|
||||
430
external/include/eigen3/unsupported/Eigen/src/Splines/SplineFitting.h
vendored
Normal file
430
external/include/eigen3/unsupported/Eigen/src/Splines/SplineFitting.h
vendored
Normal file
@@ -0,0 +1,430 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 20010-2011 Hauke Heibel <hauke.heibel@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SPLINE_FITTING_H
|
||||
#define EIGEN_SPLINE_FITTING_H
|
||||
|
||||
#include <algorithm>
|
||||
#include <functional>
|
||||
#include <numeric>
|
||||
#include <vector>
|
||||
|
||||
#include "SplineFwd.h"
|
||||
|
||||
#include <Eigen/LU>
|
||||
#include <Eigen/QR>
|
||||
|
||||
namespace Eigen
|
||||
{
|
||||
/**
|
||||
* \brief Computes knot averages.
|
||||
* \ingroup Splines_Module
|
||||
*
|
||||
* The knots are computed as
|
||||
* \f{align*}
|
||||
* u_0 & = \hdots = u_p = 0 \\
|
||||
* u_{m-p} & = \hdots = u_{m} = 1 \\
|
||||
* u_{j+p} & = \frac{1}{p}\sum_{i=j}^{j+p-1}\bar{u}_i \quad\quad j=1,\hdots,n-p
|
||||
* \f}
|
||||
* where \f$p\f$ is the degree and \f$m+1\f$ the number knots
|
||||
* of the desired interpolating spline.
|
||||
*
|
||||
* \param[in] parameters The input parameters. During interpolation one for each data point.
|
||||
* \param[in] degree The spline degree which is used during the interpolation.
|
||||
* \param[out] knots The output knot vector.
|
||||
*
|
||||
* \sa Les Piegl and Wayne Tiller, The NURBS book (2nd ed.), 1997, 9.2.1 Global Curve Interpolation to Point Data
|
||||
**/
|
||||
template <typename KnotVectorType>
|
||||
void KnotAveraging(const KnotVectorType& parameters, DenseIndex degree, KnotVectorType& knots)
|
||||
{
|
||||
knots.resize(parameters.size()+degree+1);
|
||||
|
||||
for (DenseIndex j=1; j<parameters.size()-degree; ++j)
|
||||
knots(j+degree) = parameters.segment(j,degree).mean();
|
||||
|
||||
knots.segment(0,degree+1) = KnotVectorType::Zero(degree+1);
|
||||
knots.segment(knots.size()-degree-1,degree+1) = KnotVectorType::Ones(degree+1);
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Computes knot averages when derivative constraints are present.
|
||||
* Note that this is a technical interpretation of the referenced article
|
||||
* since the algorithm contained therein is incorrect as written.
|
||||
* \ingroup Splines_Module
|
||||
*
|
||||
* \param[in] parameters The parameters at which the interpolation B-Spline
|
||||
* will intersect the given interpolation points. The parameters
|
||||
* are assumed to be a non-decreasing sequence.
|
||||
* \param[in] degree The degree of the interpolating B-Spline. This must be
|
||||
* greater than zero.
|
||||
* \param[in] derivativeIndices The indices corresponding to parameters at
|
||||
* which there are derivative constraints. The indices are assumed
|
||||
* to be a non-decreasing sequence.
|
||||
* \param[out] knots The calculated knot vector. These will be returned as a
|
||||
* non-decreasing sequence
|
||||
*
|
||||
* \sa Les A. Piegl, Khairan Rajab, Volha Smarodzinana. 2008.
|
||||
* Curve interpolation with directional constraints for engineering design.
|
||||
* Engineering with Computers
|
||||
**/
|
||||
template <typename KnotVectorType, typename ParameterVectorType, typename IndexArray>
|
||||
void KnotAveragingWithDerivatives(const ParameterVectorType& parameters,
|
||||
const unsigned int degree,
|
||||
const IndexArray& derivativeIndices,
|
||||
KnotVectorType& knots)
|
||||
{
|
||||
typedef typename ParameterVectorType::Scalar Scalar;
|
||||
|
||||
DenseIndex numParameters = parameters.size();
|
||||
DenseIndex numDerivatives = derivativeIndices.size();
|
||||
|
||||
if (numDerivatives < 1)
|
||||
{
|
||||
KnotAveraging(parameters, degree, knots);
|
||||
return;
|
||||
}
|
||||
|
||||
DenseIndex startIndex;
|
||||
DenseIndex endIndex;
|
||||
|
||||
DenseIndex numInternalDerivatives = numDerivatives;
|
||||
|
||||
if (derivativeIndices[0] == 0)
|
||||
{
|
||||
startIndex = 0;
|
||||
--numInternalDerivatives;
|
||||
}
|
||||
else
|
||||
{
|
||||
startIndex = 1;
|
||||
}
|
||||
if (derivativeIndices[numDerivatives - 1] == numParameters - 1)
|
||||
{
|
||||
endIndex = numParameters - degree;
|
||||
--numInternalDerivatives;
|
||||
}
|
||||
else
|
||||
{
|
||||
endIndex = numParameters - degree - 1;
|
||||
}
|
||||
|
||||
// There are (endIndex - startIndex + 1) knots obtained from the averaging
|
||||
// and 2 for the first and last parameters.
|
||||
DenseIndex numAverageKnots = endIndex - startIndex + 3;
|
||||
KnotVectorType averageKnots(numAverageKnots);
|
||||
averageKnots[0] = parameters[0];
|
||||
|
||||
int newKnotIndex = 0;
|
||||
for (DenseIndex i = startIndex; i <= endIndex; ++i)
|
||||
averageKnots[++newKnotIndex] = parameters.segment(i, degree).mean();
|
||||
averageKnots[++newKnotIndex] = parameters[numParameters - 1];
|
||||
|
||||
newKnotIndex = -1;
|
||||
|
||||
ParameterVectorType temporaryParameters(numParameters + 1);
|
||||
KnotVectorType derivativeKnots(numInternalDerivatives);
|
||||
for (DenseIndex i = 0; i < numAverageKnots - 1; ++i)
|
||||
{
|
||||
temporaryParameters[0] = averageKnots[i];
|
||||
ParameterVectorType parameterIndices(numParameters);
|
||||
int temporaryParameterIndex = 1;
|
||||
for (DenseIndex j = 0; j < numParameters; ++j)
|
||||
{
|
||||
Scalar parameter = parameters[j];
|
||||
if (parameter >= averageKnots[i] && parameter < averageKnots[i + 1])
|
||||
{
|
||||
parameterIndices[temporaryParameterIndex] = j;
|
||||
temporaryParameters[temporaryParameterIndex++] = parameter;
|
||||
}
|
||||
}
|
||||
temporaryParameters[temporaryParameterIndex] = averageKnots[i + 1];
|
||||
|
||||
for (int j = 0; j <= temporaryParameterIndex - 2; ++j)
|
||||
{
|
||||
for (DenseIndex k = 0; k < derivativeIndices.size(); ++k)
|
||||
{
|
||||
if (parameterIndices[j + 1] == derivativeIndices[k]
|
||||
&& parameterIndices[j + 1] != 0
|
||||
&& parameterIndices[j + 1] != numParameters - 1)
|
||||
{
|
||||
derivativeKnots[++newKnotIndex] = temporaryParameters.segment(j, 3).mean();
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
KnotVectorType temporaryKnots(averageKnots.size() + derivativeKnots.size());
|
||||
|
||||
std::merge(averageKnots.data(), averageKnots.data() + averageKnots.size(),
|
||||
derivativeKnots.data(), derivativeKnots.data() + derivativeKnots.size(),
|
||||
temporaryKnots.data());
|
||||
|
||||
// Number of knots (one for each point and derivative) plus spline order.
|
||||
DenseIndex numKnots = numParameters + numDerivatives + degree + 1;
|
||||
knots.resize(numKnots);
|
||||
|
||||
knots.head(degree).fill(temporaryKnots[0]);
|
||||
knots.tail(degree).fill(temporaryKnots.template tail<1>()[0]);
|
||||
knots.segment(degree, temporaryKnots.size()) = temporaryKnots;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Computes chord length parameters which are required for spline interpolation.
|
||||
* \ingroup Splines_Module
|
||||
*
|
||||
* \param[in] pts The data points to which a spline should be fit.
|
||||
* \param[out] chord_lengths The resulting chord lenggth vector.
|
||||
*
|
||||
* \sa Les Piegl and Wayne Tiller, The NURBS book (2nd ed.), 1997, 9.2.1 Global Curve Interpolation to Point Data
|
||||
**/
|
||||
template <typename PointArrayType, typename KnotVectorType>
|
||||
void ChordLengths(const PointArrayType& pts, KnotVectorType& chord_lengths)
|
||||
{
|
||||
typedef typename KnotVectorType::Scalar Scalar;
|
||||
|
||||
const DenseIndex n = pts.cols();
|
||||
|
||||
// 1. compute the column-wise norms
|
||||
chord_lengths.resize(pts.cols());
|
||||
chord_lengths[0] = 0;
|
||||
chord_lengths.rightCols(n-1) = (pts.array().leftCols(n-1) - pts.array().rightCols(n-1)).matrix().colwise().norm();
|
||||
|
||||
// 2. compute the partial sums
|
||||
std::partial_sum(chord_lengths.data(), chord_lengths.data()+n, chord_lengths.data());
|
||||
|
||||
// 3. normalize the data
|
||||
chord_lengths /= chord_lengths(n-1);
|
||||
chord_lengths(n-1) = Scalar(1);
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Spline fitting methods.
|
||||
* \ingroup Splines_Module
|
||||
**/
|
||||
template <typename SplineType>
|
||||
struct SplineFitting
|
||||
{
|
||||
typedef typename SplineType::KnotVectorType KnotVectorType;
|
||||
typedef typename SplineType::ParameterVectorType ParameterVectorType;
|
||||
|
||||
/**
|
||||
* \brief Fits an interpolating Spline to the given data points.
|
||||
*
|
||||
* \param pts The points for which an interpolating spline will be computed.
|
||||
* \param degree The degree of the interpolating spline.
|
||||
*
|
||||
* \returns A spline interpolating the initially provided points.
|
||||
**/
|
||||
template <typename PointArrayType>
|
||||
static SplineType Interpolate(const PointArrayType& pts, DenseIndex degree);
|
||||
|
||||
/**
|
||||
* \brief Fits an interpolating Spline to the given data points.
|
||||
*
|
||||
* \param pts The points for which an interpolating spline will be computed.
|
||||
* \param degree The degree of the interpolating spline.
|
||||
* \param knot_parameters The knot parameters for the interpolation.
|
||||
*
|
||||
* \returns A spline interpolating the initially provided points.
|
||||
**/
|
||||
template <typename PointArrayType>
|
||||
static SplineType Interpolate(const PointArrayType& pts, DenseIndex degree, const KnotVectorType& knot_parameters);
|
||||
|
||||
/**
|
||||
* \brief Fits an interpolating spline to the given data points and
|
||||
* derivatives.
|
||||
*
|
||||
* \param points The points for which an interpolating spline will be computed.
|
||||
* \param derivatives The desired derivatives of the interpolating spline at interpolation
|
||||
* points.
|
||||
* \param derivativeIndices An array indicating which point each derivative belongs to. This
|
||||
* must be the same size as @a derivatives.
|
||||
* \param degree The degree of the interpolating spline.
|
||||
*
|
||||
* \returns A spline interpolating @a points with @a derivatives at those points.
|
||||
*
|
||||
* \sa Les A. Piegl, Khairan Rajab, Volha Smarodzinana. 2008.
|
||||
* Curve interpolation with directional constraints for engineering design.
|
||||
* Engineering with Computers
|
||||
**/
|
||||
template <typename PointArrayType, typename IndexArray>
|
||||
static SplineType InterpolateWithDerivatives(const PointArrayType& points,
|
||||
const PointArrayType& derivatives,
|
||||
const IndexArray& derivativeIndices,
|
||||
const unsigned int degree);
|
||||
|
||||
/**
|
||||
* \brief Fits an interpolating spline to the given data points and derivatives.
|
||||
*
|
||||
* \param points The points for which an interpolating spline will be computed.
|
||||
* \param derivatives The desired derivatives of the interpolating spline at interpolation points.
|
||||
* \param derivativeIndices An array indicating which point each derivative belongs to. This
|
||||
* must be the same size as @a derivatives.
|
||||
* \param degree The degree of the interpolating spline.
|
||||
* \param parameters The parameters corresponding to the interpolation points.
|
||||
*
|
||||
* \returns A spline interpolating @a points with @a derivatives at those points.
|
||||
*
|
||||
* \sa Les A. Piegl, Khairan Rajab, Volha Smarodzinana. 2008.
|
||||
* Curve interpolation with directional constraints for engineering design.
|
||||
* Engineering with Computers
|
||||
*/
|
||||
template <typename PointArrayType, typename IndexArray>
|
||||
static SplineType InterpolateWithDerivatives(const PointArrayType& points,
|
||||
const PointArrayType& derivatives,
|
||||
const IndexArray& derivativeIndices,
|
||||
const unsigned int degree,
|
||||
const ParameterVectorType& parameters);
|
||||
};
|
||||
|
||||
template <typename SplineType>
|
||||
template <typename PointArrayType>
|
||||
SplineType SplineFitting<SplineType>::Interpolate(const PointArrayType& pts, DenseIndex degree, const KnotVectorType& knot_parameters)
|
||||
{
|
||||
typedef typename SplineType::KnotVectorType::Scalar Scalar;
|
||||
typedef typename SplineType::ControlPointVectorType ControlPointVectorType;
|
||||
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
|
||||
|
||||
KnotVectorType knots;
|
||||
KnotAveraging(knot_parameters, degree, knots);
|
||||
|
||||
DenseIndex n = pts.cols();
|
||||
MatrixType A = MatrixType::Zero(n,n);
|
||||
for (DenseIndex i=1; i<n-1; ++i)
|
||||
{
|
||||
const DenseIndex span = SplineType::Span(knot_parameters[i], degree, knots);
|
||||
|
||||
// The segment call should somehow be told the spline order at compile time.
|
||||
A.row(i).segment(span-degree, degree+1) = SplineType::BasisFunctions(knot_parameters[i], degree, knots);
|
||||
}
|
||||
A(0,0) = 1.0;
|
||||
A(n-1,n-1) = 1.0;
|
||||
|
||||
HouseholderQR<MatrixType> qr(A);
|
||||
|
||||
// Here, we are creating a temporary due to an Eigen issue.
|
||||
ControlPointVectorType ctrls = qr.solve(MatrixType(pts.transpose())).transpose();
|
||||
|
||||
return SplineType(knots, ctrls);
|
||||
}
|
||||
|
||||
template <typename SplineType>
|
||||
template <typename PointArrayType>
|
||||
SplineType SplineFitting<SplineType>::Interpolate(const PointArrayType& pts, DenseIndex degree)
|
||||
{
|
||||
KnotVectorType chord_lengths; // knot parameters
|
||||
ChordLengths(pts, chord_lengths);
|
||||
return Interpolate(pts, degree, chord_lengths);
|
||||
}
|
||||
|
||||
template <typename SplineType>
|
||||
template <typename PointArrayType, typename IndexArray>
|
||||
SplineType
|
||||
SplineFitting<SplineType>::InterpolateWithDerivatives(const PointArrayType& points,
|
||||
const PointArrayType& derivatives,
|
||||
const IndexArray& derivativeIndices,
|
||||
const unsigned int degree,
|
||||
const ParameterVectorType& parameters)
|
||||
{
|
||||
typedef typename SplineType::KnotVectorType::Scalar Scalar;
|
||||
typedef typename SplineType::ControlPointVectorType ControlPointVectorType;
|
||||
|
||||
typedef Matrix<Scalar, Dynamic, Dynamic> MatrixType;
|
||||
|
||||
const DenseIndex n = points.cols() + derivatives.cols();
|
||||
|
||||
KnotVectorType knots;
|
||||
|
||||
KnotAveragingWithDerivatives(parameters, degree, derivativeIndices, knots);
|
||||
|
||||
// fill matrix
|
||||
MatrixType A = MatrixType::Zero(n, n);
|
||||
|
||||
// Use these dimensions for quicker populating, then transpose for solving.
|
||||
MatrixType b(points.rows(), n);
|
||||
|
||||
DenseIndex startRow;
|
||||
DenseIndex derivativeStart;
|
||||
|
||||
// End derivatives.
|
||||
if (derivativeIndices[0] == 0)
|
||||
{
|
||||
A.template block<1, 2>(1, 0) << -1, 1;
|
||||
|
||||
Scalar y = (knots(degree + 1) - knots(0)) / degree;
|
||||
b.col(1) = y*derivatives.col(0);
|
||||
|
||||
startRow = 2;
|
||||
derivativeStart = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
startRow = 1;
|
||||
derivativeStart = 0;
|
||||
}
|
||||
if (derivativeIndices[derivatives.cols() - 1] == points.cols() - 1)
|
||||
{
|
||||
A.template block<1, 2>(n - 2, n - 2) << -1, 1;
|
||||
|
||||
Scalar y = (knots(knots.size() - 1) - knots(knots.size() - (degree + 2))) / degree;
|
||||
b.col(b.cols() - 2) = y*derivatives.col(derivatives.cols() - 1);
|
||||
}
|
||||
|
||||
DenseIndex row = startRow;
|
||||
DenseIndex derivativeIndex = derivativeStart;
|
||||
for (DenseIndex i = 1; i < parameters.size() - 1; ++i)
|
||||
{
|
||||
const DenseIndex span = SplineType::Span(parameters[i], degree, knots);
|
||||
|
||||
if (derivativeIndices[derivativeIndex] == i)
|
||||
{
|
||||
A.block(row, span - degree, 2, degree + 1)
|
||||
= SplineType::BasisFunctionDerivatives(parameters[i], 1, degree, knots);
|
||||
|
||||
b.col(row++) = points.col(i);
|
||||
b.col(row++) = derivatives.col(derivativeIndex++);
|
||||
}
|
||||
else
|
||||
{
|
||||
A.row(row++).segment(span - degree, degree + 1)
|
||||
= SplineType::BasisFunctions(parameters[i], degree, knots);
|
||||
}
|
||||
}
|
||||
b.col(0) = points.col(0);
|
||||
b.col(b.cols() - 1) = points.col(points.cols() - 1);
|
||||
A(0,0) = 1;
|
||||
A(n - 1, n - 1) = 1;
|
||||
|
||||
// Solve
|
||||
FullPivLU<MatrixType> lu(A);
|
||||
ControlPointVectorType controlPoints = lu.solve(MatrixType(b.transpose())).transpose();
|
||||
|
||||
SplineType spline(knots, controlPoints);
|
||||
|
||||
return spline;
|
||||
}
|
||||
|
||||
template <typename SplineType>
|
||||
template <typename PointArrayType, typename IndexArray>
|
||||
SplineType
|
||||
SplineFitting<SplineType>::InterpolateWithDerivatives(const PointArrayType& points,
|
||||
const PointArrayType& derivatives,
|
||||
const IndexArray& derivativeIndices,
|
||||
const unsigned int degree)
|
||||
{
|
||||
ParameterVectorType parameters;
|
||||
ChordLengths(points, parameters);
|
||||
return InterpolateWithDerivatives(points, derivatives, derivativeIndices, degree, parameters);
|
||||
}
|
||||
}
|
||||
|
||||
#endif // EIGEN_SPLINE_FITTING_H
|
||||
93
external/include/eigen3/unsupported/Eigen/src/Splines/SplineFwd.h
vendored
Normal file
93
external/include/eigen3/unsupported/Eigen/src/Splines/SplineFwd.h
vendored
Normal file
@@ -0,0 +1,93 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 20010-2011 Hauke Heibel <hauke.heibel@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SPLINES_FWD_H
|
||||
#define EIGEN_SPLINES_FWD_H
|
||||
|
||||
#include <Eigen/Core>
|
||||
|
||||
namespace Eigen
|
||||
{
|
||||
template <typename Scalar, int Dim, int Degree = Dynamic> class Spline;
|
||||
|
||||
template < typename SplineType, int DerivativeOrder = Dynamic > struct SplineTraits {};
|
||||
|
||||
/**
|
||||
* \ingroup Splines_Module
|
||||
* \brief Compile-time attributes of the Spline class for Dynamic degree.
|
||||
**/
|
||||
template <typename _Scalar, int _Dim, int _Degree>
|
||||
struct SplineTraits< Spline<_Scalar, _Dim, _Degree>, Dynamic >
|
||||
{
|
||||
typedef _Scalar Scalar; /*!< The spline curve's scalar type. */
|
||||
enum { Dimension = _Dim /*!< The spline curve's dimension. */ };
|
||||
enum { Degree = _Degree /*!< The spline curve's degree. */ };
|
||||
|
||||
enum { OrderAtCompileTime = _Degree==Dynamic ? Dynamic : _Degree+1 /*!< The spline curve's order at compile-time. */ };
|
||||
enum { NumOfDerivativesAtCompileTime = OrderAtCompileTime /*!< The number of derivatives defined for the current spline. */ };
|
||||
|
||||
enum { DerivativeMemoryLayout = Dimension==1 ? RowMajor : ColMajor /*!< The derivative type's memory layout. */ };
|
||||
|
||||
/** \brief The data type used to store non-zero basis functions. */
|
||||
typedef Array<Scalar,1,OrderAtCompileTime> BasisVectorType;
|
||||
|
||||
/** \brief The data type used to store the values of the basis function derivatives. */
|
||||
typedef Array<Scalar,Dynamic,Dynamic,RowMajor,NumOfDerivativesAtCompileTime,OrderAtCompileTime> BasisDerivativeType;
|
||||
|
||||
/** \brief The data type used to store the spline's derivative values. */
|
||||
typedef Array<Scalar,Dimension,Dynamic,DerivativeMemoryLayout,Dimension,NumOfDerivativesAtCompileTime> DerivativeType;
|
||||
|
||||
/** \brief The point type the spline is representing. */
|
||||
typedef Array<Scalar,Dimension,1> PointType;
|
||||
|
||||
/** \brief The data type used to store knot vectors. */
|
||||
typedef Array<Scalar,1,Dynamic> KnotVectorType;
|
||||
|
||||
/** \brief The data type used to store parameter vectors. */
|
||||
typedef Array<Scalar,1,Dynamic> ParameterVectorType;
|
||||
|
||||
/** \brief The data type representing the spline's control points. */
|
||||
typedef Array<Scalar,Dimension,Dynamic> ControlPointVectorType;
|
||||
};
|
||||
|
||||
/**
|
||||
* \ingroup Splines_Module
|
||||
* \brief Compile-time attributes of the Spline class for fixed degree.
|
||||
*
|
||||
* The traits class inherits all attributes from the SplineTraits of Dynamic degree.
|
||||
**/
|
||||
template < typename _Scalar, int _Dim, int _Degree, int _DerivativeOrder >
|
||||
struct SplineTraits< Spline<_Scalar, _Dim, _Degree>, _DerivativeOrder > : public SplineTraits< Spline<_Scalar, _Dim, _Degree> >
|
||||
{
|
||||
enum { OrderAtCompileTime = _Degree==Dynamic ? Dynamic : _Degree+1 /*!< The spline curve's order at compile-time. */ };
|
||||
enum { NumOfDerivativesAtCompileTime = _DerivativeOrder==Dynamic ? Dynamic : _DerivativeOrder+1 /*!< The number of derivatives defined for the current spline. */ };
|
||||
|
||||
enum { DerivativeMemoryLayout = _Dim==1 ? RowMajor : ColMajor /*!< The derivative type's memory layout. */ };
|
||||
|
||||
/** \brief The data type used to store the values of the basis function derivatives. */
|
||||
typedef Array<_Scalar,Dynamic,Dynamic,RowMajor,NumOfDerivativesAtCompileTime,OrderAtCompileTime> BasisDerivativeType;
|
||||
|
||||
/** \brief The data type used to store the spline's derivative values. */
|
||||
typedef Array<_Scalar,_Dim,Dynamic,DerivativeMemoryLayout,_Dim,NumOfDerivativesAtCompileTime> DerivativeType;
|
||||
};
|
||||
|
||||
/** \brief 2D float B-spline with dynamic degree. */
|
||||
typedef Spline<float,2> Spline2f;
|
||||
|
||||
/** \brief 3D float B-spline with dynamic degree. */
|
||||
typedef Spline<float,3> Spline3f;
|
||||
|
||||
/** \brief 2D double B-spline with dynamic degree. */
|
||||
typedef Spline<double,2> Spline2d;
|
||||
|
||||
/** \brief 3D double B-spline with dynamic degree. */
|
||||
typedef Spline<double,3> Spline3d;
|
||||
}
|
||||
|
||||
#endif // EIGEN_SPLINES_FWD_H
|
||||
Reference in New Issue
Block a user