add Eigen as a dependency
This commit is contained in:
143
external/include/eigen3/unsupported/Eigen/src/Polynomials/PolynomialUtils.h
vendored
Normal file
143
external/include/eigen3/unsupported/Eigen/src/Polynomials/PolynomialUtils.h
vendored
Normal file
@@ -0,0 +1,143 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_POLYNOMIAL_UTILS_H
|
||||
#define EIGEN_POLYNOMIAL_UTILS_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \ingroup Polynomials_Module
|
||||
* \returns the evaluation of the polynomial at x using Horner algorithm.
|
||||
*
|
||||
* \param[in] poly : the vector of coefficients of the polynomial ordered
|
||||
* by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
|
||||
* e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
|
||||
* \param[in] x : the value to evaluate the polynomial at.
|
||||
*
|
||||
* \note for stability:
|
||||
* \f$ |x| \le 1 \f$
|
||||
*/
|
||||
template <typename Polynomials, typename T>
|
||||
inline
|
||||
T poly_eval_horner( const Polynomials& poly, const T& x )
|
||||
{
|
||||
T val=poly[poly.size()-1];
|
||||
for(DenseIndex i=poly.size()-2; i>=0; --i ){
|
||||
val = val*x + poly[i]; }
|
||||
return val;
|
||||
}
|
||||
|
||||
/** \ingroup Polynomials_Module
|
||||
* \returns the evaluation of the polynomial at x using stabilized Horner algorithm.
|
||||
*
|
||||
* \param[in] poly : the vector of coefficients of the polynomial ordered
|
||||
* by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
|
||||
* e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
|
||||
* \param[in] x : the value to evaluate the polynomial at.
|
||||
*/
|
||||
template <typename Polynomials, typename T>
|
||||
inline
|
||||
T poly_eval( const Polynomials& poly, const T& x )
|
||||
{
|
||||
typedef typename NumTraits<T>::Real Real;
|
||||
|
||||
if( numext::abs2( x ) <= Real(1) ){
|
||||
return poly_eval_horner( poly, x ); }
|
||||
else
|
||||
{
|
||||
T val=poly[0];
|
||||
T inv_x = T(1)/x;
|
||||
for( DenseIndex i=1; i<poly.size(); ++i ){
|
||||
val = val*inv_x + poly[i]; }
|
||||
|
||||
return numext::pow(x,(T)(poly.size()-1)) * val;
|
||||
}
|
||||
}
|
||||
|
||||
/** \ingroup Polynomials_Module
|
||||
* \returns a maximum bound for the absolute value of any root of the polynomial.
|
||||
*
|
||||
* \param[in] poly : the vector of coefficients of the polynomial ordered
|
||||
* by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
|
||||
* e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
|
||||
*
|
||||
* \pre
|
||||
* the leading coefficient of the input polynomial poly must be non zero
|
||||
*/
|
||||
template <typename Polynomial>
|
||||
inline
|
||||
typename NumTraits<typename Polynomial::Scalar>::Real cauchy_max_bound( const Polynomial& poly )
|
||||
{
|
||||
using std::abs;
|
||||
typedef typename Polynomial::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real Real;
|
||||
|
||||
eigen_assert( Scalar(0) != poly[poly.size()-1] );
|
||||
const Scalar inv_leading_coeff = Scalar(1)/poly[poly.size()-1];
|
||||
Real cb(0);
|
||||
|
||||
for( DenseIndex i=0; i<poly.size()-1; ++i ){
|
||||
cb += abs(poly[i]*inv_leading_coeff); }
|
||||
return cb + Real(1);
|
||||
}
|
||||
|
||||
/** \ingroup Polynomials_Module
|
||||
* \returns a minimum bound for the absolute value of any non zero root of the polynomial.
|
||||
* \param[in] poly : the vector of coefficients of the polynomial ordered
|
||||
* by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
|
||||
* e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
|
||||
*/
|
||||
template <typename Polynomial>
|
||||
inline
|
||||
typename NumTraits<typename Polynomial::Scalar>::Real cauchy_min_bound( const Polynomial& poly )
|
||||
{
|
||||
using std::abs;
|
||||
typedef typename Polynomial::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real Real;
|
||||
|
||||
DenseIndex i=0;
|
||||
while( i<poly.size()-1 && Scalar(0) == poly(i) ){ ++i; }
|
||||
if( poly.size()-1 == i ){
|
||||
return Real(1); }
|
||||
|
||||
const Scalar inv_min_coeff = Scalar(1)/poly[i];
|
||||
Real cb(1);
|
||||
for( DenseIndex j=i+1; j<poly.size(); ++j ){
|
||||
cb += abs(poly[j]*inv_min_coeff); }
|
||||
return Real(1)/cb;
|
||||
}
|
||||
|
||||
/** \ingroup Polynomials_Module
|
||||
* Given the roots of a polynomial compute the coefficients in the
|
||||
* monomial basis of the monic polynomial with same roots and minimal degree.
|
||||
* If RootVector is a vector of complexes, Polynomial should also be a vector
|
||||
* of complexes.
|
||||
* \param[in] rv : a vector containing the roots of a polynomial.
|
||||
* \param[out] poly : the vector of coefficients of the polynomial ordered
|
||||
* by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
|
||||
* e.g. \f$ 3 + x^2 \f$ is stored as a vector \f$ [ 3, 0, 1 ] \f$.
|
||||
*/
|
||||
template <typename RootVector, typename Polynomial>
|
||||
void roots_to_monicPolynomial( const RootVector& rv, Polynomial& poly )
|
||||
{
|
||||
|
||||
typedef typename Polynomial::Scalar Scalar;
|
||||
|
||||
poly.setZero( rv.size()+1 );
|
||||
poly[0] = -rv[0]; poly[1] = Scalar(1);
|
||||
for( DenseIndex i=1; i< rv.size(); ++i )
|
||||
{
|
||||
for( DenseIndex j=i+1; j>0; --j ){ poly[j] = poly[j-1] - rv[i]*poly[j]; }
|
||||
poly[0] = -rv[i]*poly[0];
|
||||
}
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_POLYNOMIAL_UTILS_H
|
||||
Reference in New Issue
Block a user