add Eigen as a dependency
This commit is contained in:
		
							
								
								
									
										442
									
								
								external/include/eigen3/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										442
									
								
								external/include/eigen3/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@@ -0,0 +1,442 @@
 | 
			
		||||
// This file is part of Eigen, a lightweight C++ template library
 | 
			
		||||
// for linear algebra.
 | 
			
		||||
//
 | 
			
		||||
// Copyright (C) 2009, 2010, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
 | 
			
		||||
// Copyright (C) 2011, 2013 Chen-Pang He <jdh8@ms63.hinet.net>
 | 
			
		||||
//
 | 
			
		||||
// This Source Code Form is subject to the terms of the Mozilla
 | 
			
		||||
// Public License v. 2.0. If a copy of the MPL was not distributed
 | 
			
		||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | 
			
		||||
 | 
			
		||||
#ifndef EIGEN_MATRIX_EXPONENTIAL
 | 
			
		||||
#define EIGEN_MATRIX_EXPONENTIAL
 | 
			
		||||
 | 
			
		||||
#include "StemFunction.h"
 | 
			
		||||
 | 
			
		||||
namespace Eigen {
 | 
			
		||||
namespace internal {
 | 
			
		||||
 | 
			
		||||
/** \brief Scaling operator.
 | 
			
		||||
 *
 | 
			
		||||
 * This struct is used by CwiseUnaryOp to scale a matrix by \f$ 2^{-s} \f$.
 | 
			
		||||
 */
 | 
			
		||||
template <typename RealScalar>
 | 
			
		||||
struct MatrixExponentialScalingOp
 | 
			
		||||
{
 | 
			
		||||
  /** \brief Constructor.
 | 
			
		||||
   *
 | 
			
		||||
   * \param[in] squarings  The integer \f$ s \f$ in this document.
 | 
			
		||||
   */
 | 
			
		||||
  MatrixExponentialScalingOp(int squarings) : m_squarings(squarings) { }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  /** \brief Scale a matrix coefficient.
 | 
			
		||||
   *
 | 
			
		||||
   * \param[in,out] x  The scalar to be scaled, becoming \f$ 2^{-s} x \f$.
 | 
			
		||||
   */
 | 
			
		||||
  inline const RealScalar operator() (const RealScalar& x) const
 | 
			
		||||
  {
 | 
			
		||||
    using std::ldexp;
 | 
			
		||||
    return ldexp(x, -m_squarings);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  typedef std::complex<RealScalar> ComplexScalar;
 | 
			
		||||
 | 
			
		||||
  /** \brief Scale a matrix coefficient.
 | 
			
		||||
   *
 | 
			
		||||
   * \param[in,out] x  The scalar to be scaled, becoming \f$ 2^{-s} x \f$.
 | 
			
		||||
   */
 | 
			
		||||
  inline const ComplexScalar operator() (const ComplexScalar& x) const
 | 
			
		||||
  {
 | 
			
		||||
    using std::ldexp;
 | 
			
		||||
    return ComplexScalar(ldexp(x.real(), -m_squarings), ldexp(x.imag(), -m_squarings));
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  private:
 | 
			
		||||
    int m_squarings;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/** \brief Compute the (3,3)-Padé approximant to the exponential.
 | 
			
		||||
 *
 | 
			
		||||
 *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
 | 
			
		||||
 *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
 | 
			
		||||
 */
 | 
			
		||||
template <typename MatA, typename MatU, typename MatV>
 | 
			
		||||
void matrix_exp_pade3(const MatA& A, MatU& U, MatV& V)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename MatA::PlainObject MatrixType;
 | 
			
		||||
  typedef typename NumTraits<typename traits<MatA>::Scalar>::Real RealScalar;
 | 
			
		||||
  const RealScalar b[] = {120.L, 60.L, 12.L, 1.L};
 | 
			
		||||
  const MatrixType A2 = A * A;
 | 
			
		||||
  const MatrixType tmp = b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
 | 
			
		||||
  U.noalias() = A * tmp;
 | 
			
		||||
  V = b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** \brief Compute the (5,5)-Padé approximant to the exponential.
 | 
			
		||||
 *
 | 
			
		||||
 *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
 | 
			
		||||
 *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
 | 
			
		||||
 */
 | 
			
		||||
template <typename MatA, typename MatU, typename MatV>
 | 
			
		||||
void matrix_exp_pade5(const MatA& A, MatU& U, MatV& V)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename MatA::PlainObject MatrixType;
 | 
			
		||||
  typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
 | 
			
		||||
  const RealScalar b[] = {30240.L, 15120.L, 3360.L, 420.L, 30.L, 1.L};
 | 
			
		||||
  const MatrixType A2 = A * A;
 | 
			
		||||
  const MatrixType A4 = A2 * A2;
 | 
			
		||||
  const MatrixType tmp = b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
 | 
			
		||||
  U.noalias() = A * tmp;
 | 
			
		||||
  V = b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** \brief Compute the (7,7)-Padé approximant to the exponential.
 | 
			
		||||
 *
 | 
			
		||||
 *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
 | 
			
		||||
 *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
 | 
			
		||||
 */
 | 
			
		||||
template <typename MatA, typename MatU, typename MatV>
 | 
			
		||||
void matrix_exp_pade7(const MatA& A, MatU& U, MatV& V)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename MatA::PlainObject MatrixType;
 | 
			
		||||
  typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
 | 
			
		||||
  const RealScalar b[] = {17297280.L, 8648640.L, 1995840.L, 277200.L, 25200.L, 1512.L, 56.L, 1.L};
 | 
			
		||||
  const MatrixType A2 = A * A;
 | 
			
		||||
  const MatrixType A4 = A2 * A2;
 | 
			
		||||
  const MatrixType A6 = A4 * A2;
 | 
			
		||||
  const MatrixType tmp = b[7] * A6 + b[5] * A4 + b[3] * A2 
 | 
			
		||||
    + b[1] * MatrixType::Identity(A.rows(), A.cols());
 | 
			
		||||
  U.noalias() = A * tmp;
 | 
			
		||||
  V = b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** \brief Compute the (9,9)-Padé approximant to the exponential.
 | 
			
		||||
 *
 | 
			
		||||
 *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
 | 
			
		||||
 *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
 | 
			
		||||
 */
 | 
			
		||||
template <typename MatA, typename MatU, typename MatV>
 | 
			
		||||
void matrix_exp_pade9(const MatA& A, MatU& U, MatV& V)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename MatA::PlainObject MatrixType;
 | 
			
		||||
  typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
 | 
			
		||||
  const RealScalar b[] = {17643225600.L, 8821612800.L, 2075673600.L, 302702400.L, 30270240.L,
 | 
			
		||||
                          2162160.L, 110880.L, 3960.L, 90.L, 1.L};
 | 
			
		||||
  const MatrixType A2 = A * A;
 | 
			
		||||
  const MatrixType A4 = A2 * A2;
 | 
			
		||||
  const MatrixType A6 = A4 * A2;
 | 
			
		||||
  const MatrixType A8 = A6 * A2;
 | 
			
		||||
  const MatrixType tmp = b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2 
 | 
			
		||||
    + b[1] * MatrixType::Identity(A.rows(), A.cols());
 | 
			
		||||
  U.noalias() = A * tmp;
 | 
			
		||||
  V = b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** \brief Compute the (13,13)-Padé approximant to the exponential.
 | 
			
		||||
 *
 | 
			
		||||
 *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
 | 
			
		||||
 *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
 | 
			
		||||
 */
 | 
			
		||||
template <typename MatA, typename MatU, typename MatV>
 | 
			
		||||
void matrix_exp_pade13(const MatA& A, MatU& U, MatV& V)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename MatA::PlainObject MatrixType;
 | 
			
		||||
  typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
 | 
			
		||||
  const RealScalar b[] = {64764752532480000.L, 32382376266240000.L, 7771770303897600.L,
 | 
			
		||||
                          1187353796428800.L, 129060195264000.L, 10559470521600.L, 670442572800.L,
 | 
			
		||||
                          33522128640.L, 1323241920.L, 40840800.L, 960960.L, 16380.L, 182.L, 1.L};
 | 
			
		||||
  const MatrixType A2 = A * A;
 | 
			
		||||
  const MatrixType A4 = A2 * A2;
 | 
			
		||||
  const MatrixType A6 = A4 * A2;
 | 
			
		||||
  V = b[13] * A6 + b[11] * A4 + b[9] * A2; // used for temporary storage
 | 
			
		||||
  MatrixType tmp = A6 * V;
 | 
			
		||||
  tmp += b[7] * A6 + b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
 | 
			
		||||
  U.noalias() = A * tmp;
 | 
			
		||||
  tmp = b[12] * A6 + b[10] * A4 + b[8] * A2;
 | 
			
		||||
  V.noalias() = A6 * tmp;
 | 
			
		||||
  V += b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** \brief Compute the (17,17)-Padé approximant to the exponential.
 | 
			
		||||
 *
 | 
			
		||||
 *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
 | 
			
		||||
 *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
 | 
			
		||||
 *
 | 
			
		||||
 *  This function activates only if your long double is double-double or quadruple.
 | 
			
		||||
 */
 | 
			
		||||
#if LDBL_MANT_DIG > 64
 | 
			
		||||
template <typename MatA, typename MatU, typename MatV>
 | 
			
		||||
void matrix_exp_pade17(const MatA& A, MatU& U, MatV& V)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename MatA::PlainObject MatrixType;
 | 
			
		||||
  typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
 | 
			
		||||
  const RealScalar b[] = {830034394580628357120000.L, 415017197290314178560000.L,
 | 
			
		||||
                          100610229646136770560000.L, 15720348382208870400000.L,
 | 
			
		||||
                          1774878043152614400000.L, 153822763739893248000.L, 10608466464820224000.L,
 | 
			
		||||
                          595373117923584000.L, 27563570274240000.L, 1060137318240000.L,
 | 
			
		||||
                          33924394183680.L, 899510451840.L, 19554575040.L, 341863200.L, 4651200.L,
 | 
			
		||||
                          46512.L, 306.L, 1.L};
 | 
			
		||||
  const MatrixType A2 = A * A;
 | 
			
		||||
  const MatrixType A4 = A2 * A2;
 | 
			
		||||
  const MatrixType A6 = A4 * A2;
 | 
			
		||||
  const MatrixType A8 = A4 * A4;
 | 
			
		||||
  V = b[17] * A8 + b[15] * A6 + b[13] * A4 + b[11] * A2; // used for temporary storage
 | 
			
		||||
  MatrixType tmp = A8 * V;
 | 
			
		||||
  tmp += b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2 
 | 
			
		||||
    + b[1] * MatrixType::Identity(A.rows(), A.cols());
 | 
			
		||||
  U.noalias() = A * tmp;
 | 
			
		||||
  tmp = b[16] * A8 + b[14] * A6 + b[12] * A4 + b[10] * A2;
 | 
			
		||||
  V.noalias() = tmp * A8;
 | 
			
		||||
  V += b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2 
 | 
			
		||||
    + b[0] * MatrixType::Identity(A.rows(), A.cols());
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
template <typename MatrixType, typename RealScalar = typename NumTraits<typename traits<MatrixType>::Scalar>::Real>
 | 
			
		||||
struct matrix_exp_computeUV
 | 
			
		||||
{
 | 
			
		||||
  /** \brief Compute Padé approximant to the exponential.
 | 
			
		||||
    *
 | 
			
		||||
    * Computes \c U, \c V and \c squarings such that \f$ (V+U)(V-U)^{-1} \f$ is a Padé
 | 
			
		||||
    * approximant of \f$ \exp(2^{-\mbox{squarings}}M) \f$ around \f$ M = 0 \f$, where \f$ M \f$
 | 
			
		||||
    * denotes the matrix \c arg. The degree of the Padé approximant and the value of squarings
 | 
			
		||||
    * are chosen such that the approximation error is no more than the round-off error.
 | 
			
		||||
    */
 | 
			
		||||
  static void run(const MatrixType& arg, MatrixType& U, MatrixType& V, int& squarings);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <typename MatrixType>
 | 
			
		||||
struct matrix_exp_computeUV<MatrixType, float>
 | 
			
		||||
{
 | 
			
		||||
  template <typename ArgType>
 | 
			
		||||
  static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings)
 | 
			
		||||
  {
 | 
			
		||||
    using std::frexp;
 | 
			
		||||
    using std::pow;
 | 
			
		||||
    const float l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
 | 
			
		||||
    squarings = 0;
 | 
			
		||||
    if (l1norm < 4.258730016922831e-001f) {
 | 
			
		||||
      matrix_exp_pade3(arg, U, V);
 | 
			
		||||
    } else if (l1norm < 1.880152677804762e+000f) {
 | 
			
		||||
      matrix_exp_pade5(arg, U, V);
 | 
			
		||||
    } else {
 | 
			
		||||
      const float maxnorm = 3.925724783138660f;
 | 
			
		||||
      frexp(l1norm / maxnorm, &squarings);
 | 
			
		||||
      if (squarings < 0) squarings = 0;
 | 
			
		||||
      MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<float>(squarings));
 | 
			
		||||
      matrix_exp_pade7(A, U, V);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <typename MatrixType>
 | 
			
		||||
struct matrix_exp_computeUV<MatrixType, double>
 | 
			
		||||
{
 | 
			
		||||
  typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
 | 
			
		||||
  template <typename ArgType>
 | 
			
		||||
  static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings)
 | 
			
		||||
  {
 | 
			
		||||
    using std::frexp;
 | 
			
		||||
    using std::pow;
 | 
			
		||||
    const RealScalar l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
 | 
			
		||||
    squarings = 0;
 | 
			
		||||
    if (l1norm < 1.495585217958292e-002) {
 | 
			
		||||
      matrix_exp_pade3(arg, U, V);
 | 
			
		||||
    } else if (l1norm < 2.539398330063230e-001) {
 | 
			
		||||
      matrix_exp_pade5(arg, U, V);
 | 
			
		||||
    } else if (l1norm < 9.504178996162932e-001) {
 | 
			
		||||
      matrix_exp_pade7(arg, U, V);
 | 
			
		||||
    } else if (l1norm < 2.097847961257068e+000) {
 | 
			
		||||
      matrix_exp_pade9(arg, U, V);
 | 
			
		||||
    } else {
 | 
			
		||||
      const RealScalar maxnorm = 5.371920351148152;
 | 
			
		||||
      frexp(l1norm / maxnorm, &squarings);
 | 
			
		||||
      if (squarings < 0) squarings = 0;
 | 
			
		||||
      MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<RealScalar>(squarings));
 | 
			
		||||
      matrix_exp_pade13(A, U, V);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
  
 | 
			
		||||
template <typename MatrixType>
 | 
			
		||||
struct matrix_exp_computeUV<MatrixType, long double>
 | 
			
		||||
{
 | 
			
		||||
  template <typename ArgType>
 | 
			
		||||
  static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings)
 | 
			
		||||
  {
 | 
			
		||||
#if   LDBL_MANT_DIG == 53   // double precision
 | 
			
		||||
    matrix_exp_computeUV<MatrixType, double>::run(arg, U, V, squarings);
 | 
			
		||||
  
 | 
			
		||||
#else
 | 
			
		||||
  
 | 
			
		||||
    using std::frexp;
 | 
			
		||||
    using std::pow;
 | 
			
		||||
    const long double l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
 | 
			
		||||
    squarings = 0;
 | 
			
		||||
  
 | 
			
		||||
#if LDBL_MANT_DIG <= 64   // extended precision
 | 
			
		||||
  
 | 
			
		||||
    if (l1norm < 4.1968497232266989671e-003L) {
 | 
			
		||||
      matrix_exp_pade3(arg, U, V);
 | 
			
		||||
    } else if (l1norm < 1.1848116734693823091e-001L) {
 | 
			
		||||
      matrix_exp_pade5(arg, U, V);
 | 
			
		||||
    } else if (l1norm < 5.5170388480686700274e-001L) {
 | 
			
		||||
      matrix_exp_pade7(arg, U, V);
 | 
			
		||||
    } else if (l1norm < 1.3759868875587845383e+000L) {
 | 
			
		||||
      matrix_exp_pade9(arg, U, V);
 | 
			
		||||
    } else {
 | 
			
		||||
      const long double maxnorm = 4.0246098906697353063L;
 | 
			
		||||
      frexp(l1norm / maxnorm, &squarings);
 | 
			
		||||
      if (squarings < 0) squarings = 0;
 | 
			
		||||
      MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings));
 | 
			
		||||
      matrix_exp_pade13(A, U, V);
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
#elif LDBL_MANT_DIG <= 106  // double-double
 | 
			
		||||
  
 | 
			
		||||
    if (l1norm < 3.2787892205607026992947488108213e-005L) {
 | 
			
		||||
      matrix_exp_pade3(arg, U, V);
 | 
			
		||||
    } else if (l1norm < 6.4467025060072760084130906076332e-003L) {
 | 
			
		||||
      matrix_exp_pade5(arg, U, V);
 | 
			
		||||
    } else if (l1norm < 6.8988028496595374751374122881143e-002L) {
 | 
			
		||||
      matrix_exp_pade7(arg, U, V);
 | 
			
		||||
    } else if (l1norm < 2.7339737518502231741495857201670e-001L) {
 | 
			
		||||
      matrix_exp_pade9(arg, U, V);
 | 
			
		||||
    } else if (l1norm < 1.3203382096514474905666448850278e+000L) {
 | 
			
		||||
      matrix_exp_pade13(arg, U, V);
 | 
			
		||||
    } else {
 | 
			
		||||
      const long double maxnorm = 3.2579440895405400856599663723517L;
 | 
			
		||||
      frexp(l1norm / maxnorm, &squarings);
 | 
			
		||||
      if (squarings < 0) squarings = 0;
 | 
			
		||||
      MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings));
 | 
			
		||||
      matrix_exp_pade17(A, U, V);
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
#elif LDBL_MANT_DIG <= 112  // quadruple precison
 | 
			
		||||
  
 | 
			
		||||
    if (l1norm < 1.639394610288918690547467954466970e-005L) {
 | 
			
		||||
      matrix_exp_pade3(arg, U, V);
 | 
			
		||||
    } else if (l1norm < 4.253237712165275566025884344433009e-003L) {
 | 
			
		||||
      matrix_exp_pade5(arg, U, V);
 | 
			
		||||
    } else if (l1norm < 5.125804063165764409885122032933142e-002L) {
 | 
			
		||||
      matrix_exp_pade7(arg, U, V);
 | 
			
		||||
    } else if (l1norm < 2.170000765161155195453205651889853e-001L) {
 | 
			
		||||
      matrix_exp_pade9(arg, U, V);
 | 
			
		||||
    } else if (l1norm < 1.125358383453143065081397882891878e+000L) {
 | 
			
		||||
      matrix_exp_pade13(arg, U, V);
 | 
			
		||||
    } else {
 | 
			
		||||
      const long double maxnorm = 2.884233277829519311757165057717815L;
 | 
			
		||||
      frexp(l1norm / maxnorm, &squarings);
 | 
			
		||||
      if (squarings < 0) squarings = 0;
 | 
			
		||||
      MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings));
 | 
			
		||||
      matrix_exp_pade17(A, U, V);
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
#else
 | 
			
		||||
  
 | 
			
		||||
    // this case should be handled in compute()
 | 
			
		||||
    eigen_assert(false && "Bug in MatrixExponential"); 
 | 
			
		||||
  
 | 
			
		||||
#endif
 | 
			
		||||
#endif  // LDBL_MANT_DIG
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<typename T> struct is_exp_known_type : false_type {};
 | 
			
		||||
template<> struct is_exp_known_type<float> : true_type {};
 | 
			
		||||
template<> struct is_exp_known_type<double> : true_type {};
 | 
			
		||||
#if LDBL_MANT_DIG <= 112
 | 
			
		||||
template<> struct is_exp_known_type<long double> : true_type {};
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
template <typename ArgType, typename ResultType>
 | 
			
		||||
void matrix_exp_compute(const ArgType& arg, ResultType &result, true_type) // natively supported scalar type
 | 
			
		||||
{
 | 
			
		||||
  typedef typename ArgType::PlainObject MatrixType;
 | 
			
		||||
  MatrixType U, V;
 | 
			
		||||
  int squarings;
 | 
			
		||||
  matrix_exp_computeUV<MatrixType>::run(arg, U, V, squarings); // Pade approximant is (U+V) / (-U+V)
 | 
			
		||||
  MatrixType numer = U + V;
 | 
			
		||||
  MatrixType denom = -U + V;
 | 
			
		||||
  result = denom.partialPivLu().solve(numer);
 | 
			
		||||
  for (int i=0; i<squarings; i++)
 | 
			
		||||
    result *= result;   // undo scaling by repeated squaring
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/* Computes the matrix exponential
 | 
			
		||||
 *
 | 
			
		||||
 * \param arg    argument of matrix exponential (should be plain object)
 | 
			
		||||
 * \param result variable in which result will be stored
 | 
			
		||||
 */
 | 
			
		||||
template <typename ArgType, typename ResultType>
 | 
			
		||||
void matrix_exp_compute(const ArgType& arg, ResultType &result, false_type) // default
 | 
			
		||||
{
 | 
			
		||||
  typedef typename ArgType::PlainObject MatrixType;
 | 
			
		||||
  typedef typename traits<MatrixType>::Scalar Scalar;
 | 
			
		||||
  typedef typename NumTraits<Scalar>::Real RealScalar;
 | 
			
		||||
  typedef typename std::complex<RealScalar> ComplexScalar;
 | 
			
		||||
  result = arg.matrixFunction(internal::stem_function_exp<ComplexScalar>);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
} // end namespace Eigen::internal
 | 
			
		||||
 | 
			
		||||
/** \ingroup MatrixFunctions_Module
 | 
			
		||||
  *
 | 
			
		||||
  * \brief Proxy for the matrix exponential of some matrix (expression).
 | 
			
		||||
  *
 | 
			
		||||
  * \tparam Derived  Type of the argument to the matrix exponential.
 | 
			
		||||
  *
 | 
			
		||||
  * This class holds the argument to the matrix exponential until it is assigned or evaluated for
 | 
			
		||||
  * some other reason (so the argument should not be changed in the meantime). It is the return type
 | 
			
		||||
  * of MatrixBase::exp() and most of the time this is the only way it is used.
 | 
			
		||||
  */
 | 
			
		||||
template<typename Derived> struct MatrixExponentialReturnValue
 | 
			
		||||
: public ReturnByValue<MatrixExponentialReturnValue<Derived> >
 | 
			
		||||
{
 | 
			
		||||
    typedef typename Derived::Index Index;
 | 
			
		||||
  public:
 | 
			
		||||
    /** \brief Constructor.
 | 
			
		||||
      *
 | 
			
		||||
      * \param src %Matrix (expression) forming the argument of the matrix exponential.
 | 
			
		||||
      */
 | 
			
		||||
    MatrixExponentialReturnValue(const Derived& src) : m_src(src) { }
 | 
			
		||||
 | 
			
		||||
    /** \brief Compute the matrix exponential.
 | 
			
		||||
      *
 | 
			
		||||
      * \param result the matrix exponential of \p src in the constructor.
 | 
			
		||||
      */
 | 
			
		||||
    template <typename ResultType>
 | 
			
		||||
    inline void evalTo(ResultType& result) const
 | 
			
		||||
    {
 | 
			
		||||
      const typename internal::nested_eval<Derived, 10>::type tmp(m_src);
 | 
			
		||||
      internal::matrix_exp_compute(tmp, result, internal::is_exp_known_type<typename Derived::Scalar>());
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    Index rows() const { return m_src.rows(); }
 | 
			
		||||
    Index cols() const { return m_src.cols(); }
 | 
			
		||||
 | 
			
		||||
  protected:
 | 
			
		||||
    const typename internal::ref_selector<Derived>::type m_src;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
namespace internal {
 | 
			
		||||
template<typename Derived>
 | 
			
		||||
struct traits<MatrixExponentialReturnValue<Derived> >
 | 
			
		||||
{
 | 
			
		||||
  typedef typename Derived::PlainObject ReturnType;
 | 
			
		||||
};
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename Derived>
 | 
			
		||||
const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const
 | 
			
		||||
{
 | 
			
		||||
  eigen_assert(rows() == cols());
 | 
			
		||||
  return MatrixExponentialReturnValue<Derived>(derived());
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
} // end namespace Eigen
 | 
			
		||||
 | 
			
		||||
#endif // EIGEN_MATRIX_EXPONENTIAL
 | 
			
		||||
							
								
								
									
										580
									
								
								external/include/eigen3/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										580
									
								
								external/include/eigen3/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@@ -0,0 +1,580 @@
 | 
			
		||||
// This file is part of Eigen, a lightweight C++ template library
 | 
			
		||||
// for linear algebra.
 | 
			
		||||
//
 | 
			
		||||
// Copyright (C) 2009-2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
 | 
			
		||||
//
 | 
			
		||||
// This Source Code Form is subject to the terms of the Mozilla
 | 
			
		||||
// Public License v. 2.0. If a copy of the MPL was not distributed
 | 
			
		||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | 
			
		||||
 | 
			
		||||
#ifndef EIGEN_MATRIX_FUNCTION_H
 | 
			
		||||
#define EIGEN_MATRIX_FUNCTION_H
 | 
			
		||||
 | 
			
		||||
#include "StemFunction.h"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
namespace Eigen { 
 | 
			
		||||
 | 
			
		||||
namespace internal {
 | 
			
		||||
 | 
			
		||||
/** \brief Maximum distance allowed between eigenvalues to be considered "close". */
 | 
			
		||||
static const float matrix_function_separation = 0.1f;
 | 
			
		||||
 | 
			
		||||
/** \ingroup MatrixFunctions_Module
 | 
			
		||||
  * \class MatrixFunctionAtomic
 | 
			
		||||
  * \brief Helper class for computing matrix functions of atomic matrices.
 | 
			
		||||
  *
 | 
			
		||||
  * Here, an atomic matrix is a triangular matrix whose diagonal entries are close to each other.
 | 
			
		||||
  */
 | 
			
		||||
template <typename MatrixType>
 | 
			
		||||
class MatrixFunctionAtomic 
 | 
			
		||||
{
 | 
			
		||||
  public:
 | 
			
		||||
 | 
			
		||||
    typedef typename MatrixType::Scalar Scalar;
 | 
			
		||||
    typedef typename stem_function<Scalar>::type StemFunction;
 | 
			
		||||
 | 
			
		||||
    /** \brief Constructor
 | 
			
		||||
      * \param[in]  f  matrix function to compute.
 | 
			
		||||
      */
 | 
			
		||||
    MatrixFunctionAtomic(StemFunction f) : m_f(f) { }
 | 
			
		||||
 | 
			
		||||
    /** \brief Compute matrix function of atomic matrix
 | 
			
		||||
      * \param[in]  A  argument of matrix function, should be upper triangular and atomic
 | 
			
		||||
      * \returns  f(A), the matrix function evaluated at the given matrix
 | 
			
		||||
      */
 | 
			
		||||
    MatrixType compute(const MatrixType& A);
 | 
			
		||||
 | 
			
		||||
  private:
 | 
			
		||||
    StemFunction* m_f;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <typename MatrixType>
 | 
			
		||||
typename NumTraits<typename MatrixType::Scalar>::Real matrix_function_compute_mu(const MatrixType& A)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename plain_col_type<MatrixType>::type VectorType;
 | 
			
		||||
  typename MatrixType::Index rows = A.rows();
 | 
			
		||||
  const MatrixType N = MatrixType::Identity(rows, rows) - A;
 | 
			
		||||
  VectorType e = VectorType::Ones(rows);
 | 
			
		||||
  N.template triangularView<Upper>().solveInPlace(e);
 | 
			
		||||
  return e.cwiseAbs().maxCoeff();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename MatrixType>
 | 
			
		||||
MatrixType MatrixFunctionAtomic<MatrixType>::compute(const MatrixType& A)
 | 
			
		||||
{
 | 
			
		||||
  // TODO: Use that A is upper triangular
 | 
			
		||||
  typedef typename NumTraits<Scalar>::Real RealScalar;
 | 
			
		||||
  typedef typename MatrixType::Index Index;
 | 
			
		||||
  Index rows = A.rows();
 | 
			
		||||
  Scalar avgEival = A.trace() / Scalar(RealScalar(rows));
 | 
			
		||||
  MatrixType Ashifted = A - avgEival * MatrixType::Identity(rows, rows);
 | 
			
		||||
  RealScalar mu = matrix_function_compute_mu(Ashifted);
 | 
			
		||||
  MatrixType F = m_f(avgEival, 0) * MatrixType::Identity(rows, rows);
 | 
			
		||||
  MatrixType P = Ashifted;
 | 
			
		||||
  MatrixType Fincr;
 | 
			
		||||
  for (Index s = 1; s < 1.1 * rows + 10; s++) { // upper limit is fairly arbitrary
 | 
			
		||||
    Fincr = m_f(avgEival, static_cast<int>(s)) * P;
 | 
			
		||||
    F += Fincr;
 | 
			
		||||
    P = Scalar(RealScalar(1.0/(s + 1))) * P * Ashifted;
 | 
			
		||||
 | 
			
		||||
    // test whether Taylor series converged
 | 
			
		||||
    const RealScalar F_norm = F.cwiseAbs().rowwise().sum().maxCoeff();
 | 
			
		||||
    const RealScalar Fincr_norm = Fincr.cwiseAbs().rowwise().sum().maxCoeff();
 | 
			
		||||
    if (Fincr_norm < NumTraits<Scalar>::epsilon() * F_norm) {
 | 
			
		||||
      RealScalar delta = 0;
 | 
			
		||||
      RealScalar rfactorial = 1;
 | 
			
		||||
      for (Index r = 0; r < rows; r++) {
 | 
			
		||||
        RealScalar mx = 0;
 | 
			
		||||
        for (Index i = 0; i < rows; i++)
 | 
			
		||||
          mx = (std::max)(mx, std::abs(m_f(Ashifted(i, i) + avgEival, static_cast<int>(s+r))));
 | 
			
		||||
        if (r != 0)
 | 
			
		||||
          rfactorial *= RealScalar(r);
 | 
			
		||||
        delta = (std::max)(delta, mx / rfactorial);
 | 
			
		||||
      }
 | 
			
		||||
      const RealScalar P_norm = P.cwiseAbs().rowwise().sum().maxCoeff();
 | 
			
		||||
      if (mu * delta * P_norm < NumTraits<Scalar>::epsilon() * F_norm) // series converged
 | 
			
		||||
        break;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  return F;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** \brief Find cluster in \p clusters containing some value 
 | 
			
		||||
  * \param[in] key Value to find
 | 
			
		||||
  * \returns Iterator to cluster containing \p key, or \c clusters.end() if no cluster in \p m_clusters
 | 
			
		||||
  * contains \p key.
 | 
			
		||||
  */
 | 
			
		||||
template <typename Index, typename ListOfClusters>
 | 
			
		||||
typename ListOfClusters::iterator matrix_function_find_cluster(Index key, ListOfClusters& clusters)
 | 
			
		||||
{
 | 
			
		||||
  typename std::list<Index>::iterator j;
 | 
			
		||||
  for (typename ListOfClusters::iterator i = clusters.begin(); i != clusters.end(); ++i) {
 | 
			
		||||
    j = std::find(i->begin(), i->end(), key);
 | 
			
		||||
    if (j != i->end())
 | 
			
		||||
      return i;
 | 
			
		||||
  }
 | 
			
		||||
  return clusters.end();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** \brief Partition eigenvalues in clusters of ei'vals close to each other
 | 
			
		||||
  * 
 | 
			
		||||
  * \param[in]  eivals    Eigenvalues
 | 
			
		||||
  * \param[out] clusters  Resulting partition of eigenvalues
 | 
			
		||||
  *
 | 
			
		||||
  * The partition satisfies the following two properties:
 | 
			
		||||
  * # Any eigenvalue in a certain cluster is at most matrix_function_separation() away from another eigenvalue
 | 
			
		||||
  *   in the same cluster.
 | 
			
		||||
  * # The distance between two eigenvalues in different clusters is more than matrix_function_separation().  
 | 
			
		||||
  * The implementation follows Algorithm 4.1 in the paper of Davies and Higham.
 | 
			
		||||
  */
 | 
			
		||||
template <typename EivalsType, typename Cluster>
 | 
			
		||||
void matrix_function_partition_eigenvalues(const EivalsType& eivals, std::list<Cluster>& clusters)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename EivalsType::Index Index;
 | 
			
		||||
  typedef typename EivalsType::RealScalar RealScalar;
 | 
			
		||||
  for (Index i=0; i<eivals.rows(); ++i) {
 | 
			
		||||
    // Find cluster containing i-th ei'val, adding a new cluster if necessary
 | 
			
		||||
    typename std::list<Cluster>::iterator qi = matrix_function_find_cluster(i, clusters);
 | 
			
		||||
    if (qi == clusters.end()) {
 | 
			
		||||
      Cluster l;
 | 
			
		||||
      l.push_back(i);
 | 
			
		||||
      clusters.push_back(l);
 | 
			
		||||
      qi = clusters.end();
 | 
			
		||||
      --qi;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Look for other element to add to the set
 | 
			
		||||
    for (Index j=i+1; j<eivals.rows(); ++j) {
 | 
			
		||||
      if (abs(eivals(j) - eivals(i)) <= RealScalar(matrix_function_separation)
 | 
			
		||||
          && std::find(qi->begin(), qi->end(), j) == qi->end()) {
 | 
			
		||||
        typename std::list<Cluster>::iterator qj = matrix_function_find_cluster(j, clusters);
 | 
			
		||||
        if (qj == clusters.end()) {
 | 
			
		||||
          qi->push_back(j);
 | 
			
		||||
        } else {
 | 
			
		||||
          qi->insert(qi->end(), qj->begin(), qj->end());
 | 
			
		||||
          clusters.erase(qj);
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** \brief Compute size of each cluster given a partitioning */
 | 
			
		||||
template <typename ListOfClusters, typename Index>
 | 
			
		||||
void matrix_function_compute_cluster_size(const ListOfClusters& clusters, Matrix<Index, Dynamic, 1>& clusterSize)
 | 
			
		||||
{
 | 
			
		||||
  const Index numClusters = static_cast<Index>(clusters.size());
 | 
			
		||||
  clusterSize.setZero(numClusters);
 | 
			
		||||
  Index clusterIndex = 0;
 | 
			
		||||
  for (typename ListOfClusters::const_iterator cluster = clusters.begin(); cluster != clusters.end(); ++cluster) {
 | 
			
		||||
    clusterSize[clusterIndex] = cluster->size();
 | 
			
		||||
    ++clusterIndex;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** \brief Compute start of each block using clusterSize */
 | 
			
		||||
template <typename VectorType>
 | 
			
		||||
void matrix_function_compute_block_start(const VectorType& clusterSize, VectorType& blockStart)
 | 
			
		||||
{
 | 
			
		||||
  blockStart.resize(clusterSize.rows());
 | 
			
		||||
  blockStart(0) = 0;
 | 
			
		||||
  for (typename VectorType::Index i = 1; i < clusterSize.rows(); i++) {
 | 
			
		||||
    blockStart(i) = blockStart(i-1) + clusterSize(i-1);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** \brief Compute mapping of eigenvalue indices to cluster indices */
 | 
			
		||||
template <typename EivalsType, typename ListOfClusters, typename VectorType>
 | 
			
		||||
void matrix_function_compute_map(const EivalsType& eivals, const ListOfClusters& clusters, VectorType& eivalToCluster)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename EivalsType::Index Index;
 | 
			
		||||
  eivalToCluster.resize(eivals.rows());
 | 
			
		||||
  Index clusterIndex = 0;
 | 
			
		||||
  for (typename ListOfClusters::const_iterator cluster = clusters.begin(); cluster != clusters.end(); ++cluster) {
 | 
			
		||||
    for (Index i = 0; i < eivals.rows(); ++i) {
 | 
			
		||||
      if (std::find(cluster->begin(), cluster->end(), i) != cluster->end()) {
 | 
			
		||||
        eivalToCluster[i] = clusterIndex;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    ++clusterIndex;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** \brief Compute permutation which groups ei'vals in same cluster together */
 | 
			
		||||
template <typename DynVectorType, typename VectorType>
 | 
			
		||||
void matrix_function_compute_permutation(const DynVectorType& blockStart, const DynVectorType& eivalToCluster, VectorType& permutation)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename VectorType::Index Index;
 | 
			
		||||
  DynVectorType indexNextEntry = blockStart;
 | 
			
		||||
  permutation.resize(eivalToCluster.rows());
 | 
			
		||||
  for (Index i = 0; i < eivalToCluster.rows(); i++) {
 | 
			
		||||
    Index cluster = eivalToCluster[i];
 | 
			
		||||
    permutation[i] = indexNextEntry[cluster];
 | 
			
		||||
    ++indexNextEntry[cluster];
 | 
			
		||||
  }
 | 
			
		||||
}  
 | 
			
		||||
 | 
			
		||||
/** \brief Permute Schur decomposition in U and T according to permutation */
 | 
			
		||||
template <typename VectorType, typename MatrixType>
 | 
			
		||||
void matrix_function_permute_schur(VectorType& permutation, MatrixType& U, MatrixType& T)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename VectorType::Index Index;
 | 
			
		||||
  for (Index i = 0; i < permutation.rows() - 1; i++) {
 | 
			
		||||
    Index j;
 | 
			
		||||
    for (j = i; j < permutation.rows(); j++) {
 | 
			
		||||
      if (permutation(j) == i) break;
 | 
			
		||||
    }
 | 
			
		||||
    eigen_assert(permutation(j) == i);
 | 
			
		||||
    for (Index k = j-1; k >= i; k--) {
 | 
			
		||||
      JacobiRotation<typename MatrixType::Scalar> rotation;
 | 
			
		||||
      rotation.makeGivens(T(k, k+1), T(k+1, k+1) - T(k, k));
 | 
			
		||||
      T.applyOnTheLeft(k, k+1, rotation.adjoint());
 | 
			
		||||
      T.applyOnTheRight(k, k+1, rotation);
 | 
			
		||||
      U.applyOnTheRight(k, k+1, rotation);
 | 
			
		||||
      std::swap(permutation.coeffRef(k), permutation.coeffRef(k+1));
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** \brief Compute block diagonal part of matrix function.
 | 
			
		||||
  *
 | 
			
		||||
  * This routine computes the matrix function applied to the block diagonal part of \p T (which should be
 | 
			
		||||
  * upper triangular), with the blocking given by \p blockStart and \p clusterSize. The matrix function of
 | 
			
		||||
  * each diagonal block is computed by \p atomic. The off-diagonal parts of \p fT are set to zero.
 | 
			
		||||
  */
 | 
			
		||||
template <typename MatrixType, typename AtomicType, typename VectorType>
 | 
			
		||||
void matrix_function_compute_block_atomic(const MatrixType& T, AtomicType& atomic, const VectorType& blockStart, const VectorType& clusterSize, MatrixType& fT)
 | 
			
		||||
{ 
 | 
			
		||||
  fT.setZero(T.rows(), T.cols());
 | 
			
		||||
  for (typename VectorType::Index i = 0; i < clusterSize.rows(); ++i) {
 | 
			
		||||
    fT.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i))
 | 
			
		||||
      = atomic.compute(T.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i)));
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** \brief Solve a triangular Sylvester equation AX + XB = C 
 | 
			
		||||
  *
 | 
			
		||||
  * \param[in]  A  the matrix A; should be square and upper triangular
 | 
			
		||||
  * \param[in]  B  the matrix B; should be square and upper triangular
 | 
			
		||||
  * \param[in]  C  the matrix C; should have correct size.
 | 
			
		||||
  *
 | 
			
		||||
  * \returns the solution X.
 | 
			
		||||
  *
 | 
			
		||||
  * If A is m-by-m and B is n-by-n, then both C and X are m-by-n.  The (i,j)-th component of the Sylvester
 | 
			
		||||
  * equation is
 | 
			
		||||
  * \f[ 
 | 
			
		||||
  *     \sum_{k=i}^m A_{ik} X_{kj} + \sum_{k=1}^j X_{ik} B_{kj} = C_{ij}. 
 | 
			
		||||
  * \f]
 | 
			
		||||
  * This can be re-arranged to yield:
 | 
			
		||||
  * \f[ 
 | 
			
		||||
  *     X_{ij} = \frac{1}{A_{ii} + B_{jj}} \Bigl( C_{ij}
 | 
			
		||||
  *     - \sum_{k=i+1}^m A_{ik} X_{kj} - \sum_{k=1}^{j-1} X_{ik} B_{kj} \Bigr).
 | 
			
		||||
  * \f]
 | 
			
		||||
  * It is assumed that A and B are such that the numerator is never zero (otherwise the Sylvester equation
 | 
			
		||||
  * does not have a unique solution). In that case, these equations can be evaluated in the order 
 | 
			
		||||
  * \f$ i=m,\ldots,1 \f$ and \f$ j=1,\ldots,n \f$.
 | 
			
		||||
  */
 | 
			
		||||
template <typename MatrixType>
 | 
			
		||||
MatrixType matrix_function_solve_triangular_sylvester(const MatrixType& A, const MatrixType& B, const MatrixType& C)
 | 
			
		||||
{
 | 
			
		||||
  eigen_assert(A.rows() == A.cols());
 | 
			
		||||
  eigen_assert(A.isUpperTriangular());
 | 
			
		||||
  eigen_assert(B.rows() == B.cols());
 | 
			
		||||
  eigen_assert(B.isUpperTriangular());
 | 
			
		||||
  eigen_assert(C.rows() == A.rows());
 | 
			
		||||
  eigen_assert(C.cols() == B.rows());
 | 
			
		||||
 | 
			
		||||
  typedef typename MatrixType::Index Index;
 | 
			
		||||
  typedef typename MatrixType::Scalar Scalar;
 | 
			
		||||
 | 
			
		||||
  Index m = A.rows();
 | 
			
		||||
  Index n = B.rows();
 | 
			
		||||
  MatrixType X(m, n);
 | 
			
		||||
 | 
			
		||||
  for (Index i = m - 1; i >= 0; --i) {
 | 
			
		||||
    for (Index j = 0; j < n; ++j) {
 | 
			
		||||
 | 
			
		||||
      // Compute AX = \sum_{k=i+1}^m A_{ik} X_{kj}
 | 
			
		||||
      Scalar AX;
 | 
			
		||||
      if (i == m - 1) {
 | 
			
		||||
	AX = 0; 
 | 
			
		||||
      } else {
 | 
			
		||||
	Matrix<Scalar,1,1> AXmatrix = A.row(i).tail(m-1-i) * X.col(j).tail(m-1-i);
 | 
			
		||||
	AX = AXmatrix(0,0);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // Compute XB = \sum_{k=1}^{j-1} X_{ik} B_{kj}
 | 
			
		||||
      Scalar XB;
 | 
			
		||||
      if (j == 0) {
 | 
			
		||||
	XB = 0; 
 | 
			
		||||
      } else {
 | 
			
		||||
	Matrix<Scalar,1,1> XBmatrix = X.row(i).head(j) * B.col(j).head(j);
 | 
			
		||||
	XB = XBmatrix(0,0);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      X(i,j) = (C(i,j) - AX - XB) / (A(i,i) + B(j,j));
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  return X;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** \brief Compute part of matrix function above block diagonal.
 | 
			
		||||
  *
 | 
			
		||||
  * This routine completes the computation of \p fT, denoting a matrix function applied to the triangular
 | 
			
		||||
  * matrix \p T. It assumes that the block diagonal part of \p fT has already been computed. The part below
 | 
			
		||||
  * the diagonal is zero, because \p T is upper triangular.
 | 
			
		||||
  */
 | 
			
		||||
template <typename MatrixType, typename VectorType>
 | 
			
		||||
void matrix_function_compute_above_diagonal(const MatrixType& T, const VectorType& blockStart, const VectorType& clusterSize, MatrixType& fT)
 | 
			
		||||
{ 
 | 
			
		||||
  typedef internal::traits<MatrixType> Traits;
 | 
			
		||||
  typedef typename MatrixType::Scalar Scalar;
 | 
			
		||||
  typedef typename MatrixType::Index Index;
 | 
			
		||||
  static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
 | 
			
		||||
  static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
 | 
			
		||||
  static const int Options = MatrixType::Options;
 | 
			
		||||
  typedef Matrix<Scalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
 | 
			
		||||
 | 
			
		||||
  for (Index k = 1; k < clusterSize.rows(); k++) {
 | 
			
		||||
    for (Index i = 0; i < clusterSize.rows() - k; i++) {
 | 
			
		||||
      // compute (i, i+k) block
 | 
			
		||||
      DynMatrixType A = T.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i));
 | 
			
		||||
      DynMatrixType B = -T.block(blockStart(i+k), blockStart(i+k), clusterSize(i+k), clusterSize(i+k));
 | 
			
		||||
      DynMatrixType C = fT.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i))
 | 
			
		||||
        * T.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k));
 | 
			
		||||
      C -= T.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k))
 | 
			
		||||
        * fT.block(blockStart(i+k), blockStart(i+k), clusterSize(i+k), clusterSize(i+k));
 | 
			
		||||
      for (Index m = i + 1; m < i + k; m++) {
 | 
			
		||||
        C += fT.block(blockStart(i), blockStart(m), clusterSize(i), clusterSize(m))
 | 
			
		||||
          * T.block(blockStart(m), blockStart(i+k), clusterSize(m), clusterSize(i+k));
 | 
			
		||||
        C -= T.block(blockStart(i), blockStart(m), clusterSize(i), clusterSize(m))
 | 
			
		||||
          * fT.block(blockStart(m), blockStart(i+k), clusterSize(m), clusterSize(i+k));
 | 
			
		||||
      }
 | 
			
		||||
      fT.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k))
 | 
			
		||||
        = matrix_function_solve_triangular_sylvester(A, B, C);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** \ingroup MatrixFunctions_Module
 | 
			
		||||
  * \brief Class for computing matrix functions.
 | 
			
		||||
  * \tparam  MatrixType  type of the argument of the matrix function,
 | 
			
		||||
  *                      expected to be an instantiation of the Matrix class template.
 | 
			
		||||
  * \tparam  AtomicType  type for computing matrix function of atomic blocks.
 | 
			
		||||
  * \tparam  IsComplex   used internally to select correct specialization.
 | 
			
		||||
  *
 | 
			
		||||
  * This class implements the Schur-Parlett algorithm for computing matrix functions. The spectrum of the
 | 
			
		||||
  * matrix is divided in clustered of eigenvalues that lies close together. This class delegates the
 | 
			
		||||
  * computation of the matrix function on every block corresponding to these clusters to an object of type
 | 
			
		||||
  * \p AtomicType and uses these results to compute the matrix function of the whole matrix. The class
 | 
			
		||||
  * \p AtomicType should have a \p compute() member function for computing the matrix function of a block.
 | 
			
		||||
  *
 | 
			
		||||
  * \sa class MatrixFunctionAtomic, class MatrixLogarithmAtomic
 | 
			
		||||
  */
 | 
			
		||||
template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
 | 
			
		||||
struct matrix_function_compute
 | 
			
		||||
{  
 | 
			
		||||
    /** \brief Compute the matrix function.
 | 
			
		||||
      *
 | 
			
		||||
      * \param[in]  A       argument of matrix function, should be a square matrix.
 | 
			
		||||
      * \param[in]  atomic  class for computing matrix function of atomic blocks.
 | 
			
		||||
      * \param[out] result  the function \p f applied to \p A, as
 | 
			
		||||
      * specified in the constructor.
 | 
			
		||||
      *
 | 
			
		||||
      * See MatrixBase::matrixFunction() for details on how this computation
 | 
			
		||||
      * is implemented.
 | 
			
		||||
      */
 | 
			
		||||
    template <typename AtomicType, typename ResultType> 
 | 
			
		||||
    static void run(const MatrixType& A, AtomicType& atomic, ResultType &result);    
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/** \internal \ingroup MatrixFunctions_Module 
 | 
			
		||||
  * \brief Partial specialization of MatrixFunction for real matrices
 | 
			
		||||
  *
 | 
			
		||||
  * This converts the real matrix to a complex matrix, compute the matrix function of that matrix, and then
 | 
			
		||||
  * converts the result back to a real matrix.
 | 
			
		||||
  */
 | 
			
		||||
template <typename MatrixType>
 | 
			
		||||
struct matrix_function_compute<MatrixType, 0>
 | 
			
		||||
{  
 | 
			
		||||
  template <typename MatA, typename AtomicType, typename ResultType>
 | 
			
		||||
  static void run(const MatA& A, AtomicType& atomic, ResultType &result)
 | 
			
		||||
  {
 | 
			
		||||
    typedef internal::traits<MatrixType> Traits;
 | 
			
		||||
    typedef typename Traits::Scalar Scalar;
 | 
			
		||||
    static const int Rows = Traits::RowsAtCompileTime, Cols = Traits::ColsAtCompileTime;
 | 
			
		||||
    static const int MaxRows = Traits::MaxRowsAtCompileTime, MaxCols = Traits::MaxColsAtCompileTime;
 | 
			
		||||
 | 
			
		||||
    typedef std::complex<Scalar> ComplexScalar;
 | 
			
		||||
    typedef Matrix<ComplexScalar, Rows, Cols, 0, MaxRows, MaxCols> ComplexMatrix;
 | 
			
		||||
 | 
			
		||||
    ComplexMatrix CA = A.template cast<ComplexScalar>();
 | 
			
		||||
    ComplexMatrix Cresult;
 | 
			
		||||
    matrix_function_compute<ComplexMatrix>::run(CA, atomic, Cresult);
 | 
			
		||||
    result = Cresult.real();
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/** \internal \ingroup MatrixFunctions_Module 
 | 
			
		||||
  * \brief Partial specialization of MatrixFunction for complex matrices
 | 
			
		||||
  */
 | 
			
		||||
template <typename MatrixType>
 | 
			
		||||
struct matrix_function_compute<MatrixType, 1>
 | 
			
		||||
{
 | 
			
		||||
  template <typename MatA, typename AtomicType, typename ResultType>
 | 
			
		||||
  static void run(const MatA& A, AtomicType& atomic, ResultType &result)
 | 
			
		||||
  {
 | 
			
		||||
    typedef internal::traits<MatrixType> Traits;
 | 
			
		||||
    
 | 
			
		||||
    // compute Schur decomposition of A
 | 
			
		||||
    const ComplexSchur<MatrixType> schurOfA(A);  
 | 
			
		||||
    MatrixType T = schurOfA.matrixT();
 | 
			
		||||
    MatrixType U = schurOfA.matrixU();
 | 
			
		||||
 | 
			
		||||
    // partition eigenvalues into clusters of ei'vals "close" to each other
 | 
			
		||||
    std::list<std::list<Index> > clusters; 
 | 
			
		||||
    matrix_function_partition_eigenvalues(T.diagonal(), clusters);
 | 
			
		||||
 | 
			
		||||
    // compute size of each cluster
 | 
			
		||||
    Matrix<Index, Dynamic, 1> clusterSize;
 | 
			
		||||
    matrix_function_compute_cluster_size(clusters, clusterSize);
 | 
			
		||||
 | 
			
		||||
    // blockStart[i] is row index at which block corresponding to i-th cluster starts 
 | 
			
		||||
    Matrix<Index, Dynamic, 1> blockStart; 
 | 
			
		||||
    matrix_function_compute_block_start(clusterSize, blockStart);
 | 
			
		||||
 | 
			
		||||
    // compute map so that eivalToCluster[i] = j means that i-th ei'val is in j-th cluster 
 | 
			
		||||
    Matrix<Index, Dynamic, 1> eivalToCluster;
 | 
			
		||||
    matrix_function_compute_map(T.diagonal(), clusters, eivalToCluster);
 | 
			
		||||
 | 
			
		||||
    // compute permutation which groups ei'vals in same cluster together 
 | 
			
		||||
    Matrix<Index, Traits::RowsAtCompileTime, 1> permutation;
 | 
			
		||||
    matrix_function_compute_permutation(blockStart, eivalToCluster, permutation);
 | 
			
		||||
 | 
			
		||||
    // permute Schur decomposition
 | 
			
		||||
    matrix_function_permute_schur(permutation, U, T);
 | 
			
		||||
 | 
			
		||||
    // compute result
 | 
			
		||||
    MatrixType fT; // matrix function applied to T
 | 
			
		||||
    matrix_function_compute_block_atomic(T, atomic, blockStart, clusterSize, fT);
 | 
			
		||||
    matrix_function_compute_above_diagonal(T, blockStart, clusterSize, fT);
 | 
			
		||||
    result = U * (fT.template triangularView<Upper>() * U.adjoint());
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
} // end of namespace internal
 | 
			
		||||
 | 
			
		||||
/** \ingroup MatrixFunctions_Module
 | 
			
		||||
  *
 | 
			
		||||
  * \brief Proxy for the matrix function of some matrix (expression).
 | 
			
		||||
  *
 | 
			
		||||
  * \tparam Derived  Type of the argument to the matrix function.
 | 
			
		||||
  *
 | 
			
		||||
  * This class holds the argument to the matrix function until it is assigned or evaluated for some other
 | 
			
		||||
  * reason (so the argument should not be changed in the meantime). It is the return type of
 | 
			
		||||
  * matrixBase::matrixFunction() and related functions and most of the time this is the only way it is used.
 | 
			
		||||
  */
 | 
			
		||||
template<typename Derived> class MatrixFunctionReturnValue
 | 
			
		||||
: public ReturnByValue<MatrixFunctionReturnValue<Derived> >
 | 
			
		||||
{
 | 
			
		||||
  public:
 | 
			
		||||
    typedef typename Derived::Scalar Scalar;
 | 
			
		||||
    typedef typename Derived::Index Index;
 | 
			
		||||
    typedef typename internal::stem_function<Scalar>::type StemFunction;
 | 
			
		||||
 | 
			
		||||
  protected:
 | 
			
		||||
    typedef typename internal::ref_selector<Derived>::type DerivedNested;
 | 
			
		||||
 | 
			
		||||
  public:
 | 
			
		||||
 | 
			
		||||
    /** \brief Constructor.
 | 
			
		||||
      *
 | 
			
		||||
      * \param[in] A  %Matrix (expression) forming the argument of the matrix function.
 | 
			
		||||
      * \param[in] f  Stem function for matrix function under consideration.
 | 
			
		||||
      */
 | 
			
		||||
    MatrixFunctionReturnValue(const Derived& A, StemFunction f) : m_A(A), m_f(f) { }
 | 
			
		||||
 | 
			
		||||
    /** \brief Compute the matrix function.
 | 
			
		||||
      *
 | 
			
		||||
      * \param[out] result \p f applied to \p A, where \p f and \p A are as in the constructor.
 | 
			
		||||
      */
 | 
			
		||||
    template <typename ResultType>
 | 
			
		||||
    inline void evalTo(ResultType& result) const
 | 
			
		||||
    {
 | 
			
		||||
      typedef typename internal::nested_eval<Derived, 10>::type NestedEvalType;
 | 
			
		||||
      typedef typename internal::remove_all<NestedEvalType>::type NestedEvalTypeClean;
 | 
			
		||||
      typedef internal::traits<NestedEvalTypeClean> Traits;
 | 
			
		||||
      static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
 | 
			
		||||
      static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
 | 
			
		||||
      typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
 | 
			
		||||
      typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
 | 
			
		||||
 | 
			
		||||
      typedef internal::MatrixFunctionAtomic<DynMatrixType> AtomicType;
 | 
			
		||||
      AtomicType atomic(m_f);
 | 
			
		||||
 | 
			
		||||
      internal::matrix_function_compute<typename NestedEvalTypeClean::PlainObject>::run(m_A, atomic, result);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    Index rows() const { return m_A.rows(); }
 | 
			
		||||
    Index cols() const { return m_A.cols(); }
 | 
			
		||||
 | 
			
		||||
  private:
 | 
			
		||||
    const DerivedNested m_A;
 | 
			
		||||
    StemFunction *m_f;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
namespace internal {
 | 
			
		||||
template<typename Derived>
 | 
			
		||||
struct traits<MatrixFunctionReturnValue<Derived> >
 | 
			
		||||
{
 | 
			
		||||
  typedef typename Derived::PlainObject ReturnType;
 | 
			
		||||
};
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/********** MatrixBase methods **********/
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template <typename Derived>
 | 
			
		||||
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::matrixFunction(typename internal::stem_function<typename internal::traits<Derived>::Scalar>::type f) const
 | 
			
		||||
{
 | 
			
		||||
  eigen_assert(rows() == cols());
 | 
			
		||||
  return MatrixFunctionReturnValue<Derived>(derived(), f);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename Derived>
 | 
			
		||||
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const
 | 
			
		||||
{
 | 
			
		||||
  eigen_assert(rows() == cols());
 | 
			
		||||
  typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
 | 
			
		||||
  return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_sin<ComplexScalar>);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename Derived>
 | 
			
		||||
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const
 | 
			
		||||
{
 | 
			
		||||
  eigen_assert(rows() == cols());
 | 
			
		||||
  typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
 | 
			
		||||
  return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_cos<ComplexScalar>);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename Derived>
 | 
			
		||||
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh() const
 | 
			
		||||
{
 | 
			
		||||
  eigen_assert(rows() == cols());
 | 
			
		||||
  typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
 | 
			
		||||
  return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_sinh<ComplexScalar>);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename Derived>
 | 
			
		||||
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const
 | 
			
		||||
{
 | 
			
		||||
  eigen_assert(rows() == cols());
 | 
			
		||||
  typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
 | 
			
		||||
  return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_cosh<ComplexScalar>);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
} // end namespace Eigen
 | 
			
		||||
 | 
			
		||||
#endif // EIGEN_MATRIX_FUNCTION_H
 | 
			
		||||
							
								
								
									
										373
									
								
								external/include/eigen3/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										373
									
								
								external/include/eigen3/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@@ -0,0 +1,373 @@
 | 
			
		||||
// This file is part of Eigen, a lightweight C++ template library
 | 
			
		||||
// for linear algebra.
 | 
			
		||||
//
 | 
			
		||||
// Copyright (C) 2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
 | 
			
		||||
// Copyright (C) 2011 Chen-Pang He <jdh8@ms63.hinet.net>
 | 
			
		||||
//
 | 
			
		||||
// This Source Code Form is subject to the terms of the Mozilla
 | 
			
		||||
// Public License v. 2.0. If a copy of the MPL was not distributed
 | 
			
		||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | 
			
		||||
 | 
			
		||||
#ifndef EIGEN_MATRIX_LOGARITHM
 | 
			
		||||
#define EIGEN_MATRIX_LOGARITHM
 | 
			
		||||
 | 
			
		||||
namespace Eigen { 
 | 
			
		||||
 | 
			
		||||
namespace internal { 
 | 
			
		||||
 | 
			
		||||
template <typename Scalar>
 | 
			
		||||
struct matrix_log_min_pade_degree 
 | 
			
		||||
{
 | 
			
		||||
  static const int value = 3;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <typename Scalar>
 | 
			
		||||
struct matrix_log_max_pade_degree 
 | 
			
		||||
{
 | 
			
		||||
  typedef typename NumTraits<Scalar>::Real RealScalar;
 | 
			
		||||
  static const int value = std::numeric_limits<RealScalar>::digits<= 24?  5:  // single precision
 | 
			
		||||
                           std::numeric_limits<RealScalar>::digits<= 53?  7:  // double precision
 | 
			
		||||
                           std::numeric_limits<RealScalar>::digits<= 64?  8:  // extended precision
 | 
			
		||||
                           std::numeric_limits<RealScalar>::digits<=106? 10:  // double-double
 | 
			
		||||
                                                                         11;  // quadruple precision
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/** \brief Compute logarithm of 2x2 triangular matrix. */
 | 
			
		||||
template <typename MatrixType>
 | 
			
		||||
void matrix_log_compute_2x2(const MatrixType& A, MatrixType& result)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename MatrixType::Scalar Scalar;
 | 
			
		||||
  typedef typename MatrixType::RealScalar RealScalar;
 | 
			
		||||
  using std::abs;
 | 
			
		||||
  using std::ceil;
 | 
			
		||||
  using std::imag;
 | 
			
		||||
  using std::log;
 | 
			
		||||
 | 
			
		||||
  Scalar logA00 = log(A(0,0));
 | 
			
		||||
  Scalar logA11 = log(A(1,1));
 | 
			
		||||
 | 
			
		||||
  result(0,0) = logA00;
 | 
			
		||||
  result(1,0) = Scalar(0);
 | 
			
		||||
  result(1,1) = logA11;
 | 
			
		||||
 | 
			
		||||
  Scalar y = A(1,1) - A(0,0);
 | 
			
		||||
  if (y==Scalar(0))
 | 
			
		||||
  {
 | 
			
		||||
    result(0,1) = A(0,1) / A(0,0);
 | 
			
		||||
  }
 | 
			
		||||
  else if ((abs(A(0,0)) < RealScalar(0.5)*abs(A(1,1))) || (abs(A(0,0)) > 2*abs(A(1,1))))
 | 
			
		||||
  {
 | 
			
		||||
    result(0,1) = A(0,1) * (logA11 - logA00) / y;
 | 
			
		||||
  }
 | 
			
		||||
  else
 | 
			
		||||
  {
 | 
			
		||||
    // computation in previous branch is inaccurate if A(1,1) \approx A(0,0)
 | 
			
		||||
    int unwindingNumber = static_cast<int>(ceil((imag(logA11 - logA00) - RealScalar(EIGEN_PI)) / RealScalar(2*EIGEN_PI)));
 | 
			
		||||
    result(0,1) = A(0,1) * (numext::log1p(y/A(0,0)) + Scalar(0,2*EIGEN_PI*unwindingNumber)) / y;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = float) */
 | 
			
		||||
inline int matrix_log_get_pade_degree(float normTminusI)
 | 
			
		||||
{
 | 
			
		||||
  const float maxNormForPade[] = { 2.5111573934555054e-1 /* degree = 3 */ , 4.0535837411880493e-1,
 | 
			
		||||
            5.3149729967117310e-1 };
 | 
			
		||||
  const int minPadeDegree = matrix_log_min_pade_degree<float>::value;
 | 
			
		||||
  const int maxPadeDegree = matrix_log_max_pade_degree<float>::value;
 | 
			
		||||
  int degree = minPadeDegree;
 | 
			
		||||
  for (; degree <= maxPadeDegree; ++degree) 
 | 
			
		||||
    if (normTminusI <= maxNormForPade[degree - minPadeDegree])
 | 
			
		||||
      break;
 | 
			
		||||
  return degree;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = double) */
 | 
			
		||||
inline int matrix_log_get_pade_degree(double normTminusI)
 | 
			
		||||
{
 | 
			
		||||
  const double maxNormForPade[] = { 1.6206284795015624e-2 /* degree = 3 */ , 5.3873532631381171e-2,
 | 
			
		||||
            1.1352802267628681e-1, 1.8662860613541288e-1, 2.642960831111435e-1 };
 | 
			
		||||
  const int minPadeDegree = matrix_log_min_pade_degree<double>::value;
 | 
			
		||||
  const int maxPadeDegree = matrix_log_max_pade_degree<double>::value;
 | 
			
		||||
  int degree = minPadeDegree;
 | 
			
		||||
  for (; degree <= maxPadeDegree; ++degree)
 | 
			
		||||
    if (normTminusI <= maxNormForPade[degree - minPadeDegree])
 | 
			
		||||
      break;
 | 
			
		||||
  return degree;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = long double) */
 | 
			
		||||
inline int matrix_log_get_pade_degree(long double normTminusI)
 | 
			
		||||
{
 | 
			
		||||
#if   LDBL_MANT_DIG == 53         // double precision
 | 
			
		||||
  const long double maxNormForPade[] = { 1.6206284795015624e-2L /* degree = 3 */ , 5.3873532631381171e-2L,
 | 
			
		||||
            1.1352802267628681e-1L, 1.8662860613541288e-1L, 2.642960831111435e-1L };
 | 
			
		||||
#elif LDBL_MANT_DIG <= 64         // extended precision
 | 
			
		||||
  const long double maxNormForPade[] = { 5.48256690357782863103e-3L /* degree = 3 */, 2.34559162387971167321e-2L,
 | 
			
		||||
            5.84603923897347449857e-2L, 1.08486423756725170223e-1L, 1.68385767881294446649e-1L,
 | 
			
		||||
            2.32777776523703892094e-1L };
 | 
			
		||||
#elif LDBL_MANT_DIG <= 106        // double-double
 | 
			
		||||
  const long double maxNormForPade[] = { 8.58970550342939562202529664318890e-5L /* degree = 3 */,
 | 
			
		||||
            9.34074328446359654039446552677759e-4L, 4.26117194647672175773064114582860e-3L,
 | 
			
		||||
            1.21546224740281848743149666560464e-2L, 2.61100544998339436713088248557444e-2L,
 | 
			
		||||
            4.66170074627052749243018566390567e-2L, 7.32585144444135027565872014932387e-2L,
 | 
			
		||||
            1.05026503471351080481093652651105e-1L };
 | 
			
		||||
#else                             // quadruple precision
 | 
			
		||||
  const long double maxNormForPade[] = { 4.7419931187193005048501568167858103e-5L /* degree = 3 */,
 | 
			
		||||
            5.8853168473544560470387769480192666e-4L, 2.9216120366601315391789493628113520e-3L,
 | 
			
		||||
            8.8415758124319434347116734705174308e-3L, 1.9850836029449446668518049562565291e-2L,
 | 
			
		||||
            3.6688019729653446926585242192447447e-2L, 5.9290962294020186998954055264528393e-2L,
 | 
			
		||||
            8.6998436081634343903250580992127677e-2L, 1.1880960220216759245467951592883642e-1L };
 | 
			
		||||
#endif
 | 
			
		||||
  const int minPadeDegree = matrix_log_min_pade_degree<long double>::value;
 | 
			
		||||
  const int maxPadeDegree = matrix_log_max_pade_degree<long double>::value;
 | 
			
		||||
  int degree = minPadeDegree;
 | 
			
		||||
  for (; degree <= maxPadeDegree; ++degree)
 | 
			
		||||
    if (normTminusI <= maxNormForPade[degree - minPadeDegree])
 | 
			
		||||
      break;
 | 
			
		||||
  return degree;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* \brief Compute Pade approximation to matrix logarithm */
 | 
			
		||||
template <typename MatrixType>
 | 
			
		||||
void matrix_log_compute_pade(MatrixType& result, const MatrixType& T, int degree)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
 | 
			
		||||
  const int minPadeDegree = 3;
 | 
			
		||||
  const int maxPadeDegree = 11;
 | 
			
		||||
  assert(degree >= minPadeDegree && degree <= maxPadeDegree);
 | 
			
		||||
 | 
			
		||||
  const RealScalar nodes[][maxPadeDegree] = { 
 | 
			
		||||
    { 0.1127016653792583114820734600217600L, 0.5000000000000000000000000000000000L,  // degree 3
 | 
			
		||||
      0.8872983346207416885179265399782400L }, 
 | 
			
		||||
    { 0.0694318442029737123880267555535953L, 0.3300094782075718675986671204483777L,  // degree 4
 | 
			
		||||
      0.6699905217924281324013328795516223L, 0.9305681557970262876119732444464048L },
 | 
			
		||||
    { 0.0469100770306680036011865608503035L, 0.2307653449471584544818427896498956L,  // degree 5
 | 
			
		||||
      0.5000000000000000000000000000000000L, 0.7692346550528415455181572103501044L,
 | 
			
		||||
      0.9530899229693319963988134391496965L },
 | 
			
		||||
    { 0.0337652428984239860938492227530027L, 0.1693953067668677431693002024900473L,  // degree 6
 | 
			
		||||
      0.3806904069584015456847491391596440L, 0.6193095930415984543152508608403560L,
 | 
			
		||||
      0.8306046932331322568306997975099527L, 0.9662347571015760139061507772469973L },
 | 
			
		||||
    { 0.0254460438286207377369051579760744L, 0.1292344072003027800680676133596058L,  // degree 7
 | 
			
		||||
      0.2970774243113014165466967939615193L, 0.5000000000000000000000000000000000L,
 | 
			
		||||
      0.7029225756886985834533032060384807L, 0.8707655927996972199319323866403942L,
 | 
			
		||||
      0.9745539561713792622630948420239256L },
 | 
			
		||||
    { 0.0198550717512318841582195657152635L, 0.1016667612931866302042230317620848L,  // degree 8
 | 
			
		||||
      0.2372337950418355070911304754053768L, 0.4082826787521750975302619288199080L,
 | 
			
		||||
      0.5917173212478249024697380711800920L, 0.7627662049581644929088695245946232L,
 | 
			
		||||
      0.8983332387068133697957769682379152L, 0.9801449282487681158417804342847365L },
 | 
			
		||||
    { 0.0159198802461869550822118985481636L, 0.0819844463366821028502851059651326L,  // degree 9
 | 
			
		||||
      0.1933142836497048013456489803292629L, 0.3378732882980955354807309926783317L,
 | 
			
		||||
      0.5000000000000000000000000000000000L, 0.6621267117019044645192690073216683L,
 | 
			
		||||
      0.8066857163502951986543510196707371L, 0.9180155536633178971497148940348674L,
 | 
			
		||||
      0.9840801197538130449177881014518364L },
 | 
			
		||||
    { 0.0130467357414141399610179939577740L, 0.0674683166555077446339516557882535L,  // degree 10
 | 
			
		||||
      0.1602952158504877968828363174425632L, 0.2833023029353764046003670284171079L,
 | 
			
		||||
      0.4255628305091843945575869994351400L, 0.5744371694908156054424130005648600L,
 | 
			
		||||
      0.7166976970646235953996329715828921L, 0.8397047841495122031171636825574368L,
 | 
			
		||||
      0.9325316833444922553660483442117465L, 0.9869532642585858600389820060422260L },
 | 
			
		||||
    { 0.0108856709269715035980309994385713L, 0.0564687001159523504624211153480364L,  // degree 11
 | 
			
		||||
      0.1349239972129753379532918739844233L, 0.2404519353965940920371371652706952L,
 | 
			
		||||
      0.3652284220238275138342340072995692L, 0.5000000000000000000000000000000000L,
 | 
			
		||||
      0.6347715779761724861657659927004308L, 0.7595480646034059079628628347293048L,
 | 
			
		||||
      0.8650760027870246620467081260155767L, 0.9435312998840476495375788846519636L,
 | 
			
		||||
      0.9891143290730284964019690005614287L } };
 | 
			
		||||
 | 
			
		||||
  const RealScalar weights[][maxPadeDegree] = { 
 | 
			
		||||
    { 0.2777777777777777777777777777777778L, 0.4444444444444444444444444444444444L,  // degree 3
 | 
			
		||||
      0.2777777777777777777777777777777778L },
 | 
			
		||||
    { 0.1739274225687269286865319746109997L, 0.3260725774312730713134680253890003L,  // degree 4
 | 
			
		||||
      0.3260725774312730713134680253890003L, 0.1739274225687269286865319746109997L },
 | 
			
		||||
    { 0.1184634425280945437571320203599587L, 0.2393143352496832340206457574178191L,  // degree 5
 | 
			
		||||
      0.2844444444444444444444444444444444L, 0.2393143352496832340206457574178191L,
 | 
			
		||||
      0.1184634425280945437571320203599587L },
 | 
			
		||||
    { 0.0856622461895851725201480710863665L, 0.1803807865240693037849167569188581L,  // degree 6
 | 
			
		||||
      0.2339569672863455236949351719947755L, 0.2339569672863455236949351719947755L,
 | 
			
		||||
      0.1803807865240693037849167569188581L, 0.0856622461895851725201480710863665L },
 | 
			
		||||
    { 0.0647424830844348466353057163395410L, 0.1398526957446383339507338857118898L,  // degree 7
 | 
			
		||||
      0.1909150252525594724751848877444876L, 0.2089795918367346938775510204081633L,
 | 
			
		||||
      0.1909150252525594724751848877444876L, 0.1398526957446383339507338857118898L,
 | 
			
		||||
      0.0647424830844348466353057163395410L },
 | 
			
		||||
    { 0.0506142681451881295762656771549811L, 0.1111905172266872352721779972131204L,  // degree 8
 | 
			
		||||
      0.1568533229389436436689811009933007L, 0.1813418916891809914825752246385978L,
 | 
			
		||||
      0.1813418916891809914825752246385978L, 0.1568533229389436436689811009933007L,
 | 
			
		||||
      0.1111905172266872352721779972131204L, 0.0506142681451881295762656771549811L },
 | 
			
		||||
    { 0.0406371941807872059859460790552618L, 0.0903240803474287020292360156214564L,  // degree 9
 | 
			
		||||
      0.1303053482014677311593714347093164L, 0.1561735385200014200343152032922218L,
 | 
			
		||||
      0.1651196775006298815822625346434870L, 0.1561735385200014200343152032922218L,
 | 
			
		||||
      0.1303053482014677311593714347093164L, 0.0903240803474287020292360156214564L,
 | 
			
		||||
      0.0406371941807872059859460790552618L },
 | 
			
		||||
    { 0.0333356721543440687967844049466659L, 0.0747256745752902965728881698288487L,  // degree 10
 | 
			
		||||
      0.1095431812579910219977674671140816L, 0.1346333596549981775456134607847347L,
 | 
			
		||||
      0.1477621123573764350869464973256692L, 0.1477621123573764350869464973256692L,
 | 
			
		||||
      0.1346333596549981775456134607847347L, 0.1095431812579910219977674671140816L,
 | 
			
		||||
      0.0747256745752902965728881698288487L, 0.0333356721543440687967844049466659L },
 | 
			
		||||
    { 0.0278342835580868332413768602212743L, 0.0627901847324523123173471496119701L,  // degree 11
 | 
			
		||||
      0.0931451054638671257130488207158280L, 0.1165968822959952399592618524215876L,
 | 
			
		||||
      0.1314022722551233310903444349452546L, 0.1364625433889503153572417641681711L,
 | 
			
		||||
      0.1314022722551233310903444349452546L, 0.1165968822959952399592618524215876L,
 | 
			
		||||
      0.0931451054638671257130488207158280L, 0.0627901847324523123173471496119701L,
 | 
			
		||||
      0.0278342835580868332413768602212743L } };
 | 
			
		||||
 | 
			
		||||
  MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
 | 
			
		||||
  result.setZero(T.rows(), T.rows());
 | 
			
		||||
  for (int k = 0; k < degree; ++k) {
 | 
			
		||||
    RealScalar weight = weights[degree-minPadeDegree][k];
 | 
			
		||||
    RealScalar node = nodes[degree-minPadeDegree][k];
 | 
			
		||||
    result += weight * (MatrixType::Identity(T.rows(), T.rows()) + node * TminusI)
 | 
			
		||||
                       .template triangularView<Upper>().solve(TminusI);
 | 
			
		||||
  }
 | 
			
		||||
} 
 | 
			
		||||
 | 
			
		||||
/** \brief Compute logarithm of triangular matrices with size > 2. 
 | 
			
		||||
  * \details This uses a inverse scale-and-square algorithm. */
 | 
			
		||||
template <typename MatrixType>
 | 
			
		||||
void matrix_log_compute_big(const MatrixType& A, MatrixType& result)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename MatrixType::Scalar Scalar;
 | 
			
		||||
  typedef typename NumTraits<Scalar>::Real RealScalar;
 | 
			
		||||
  using std::pow;
 | 
			
		||||
 | 
			
		||||
  int numberOfSquareRoots = 0;
 | 
			
		||||
  int numberOfExtraSquareRoots = 0;
 | 
			
		||||
  int degree;
 | 
			
		||||
  MatrixType T = A, sqrtT;
 | 
			
		||||
 | 
			
		||||
  int maxPadeDegree = matrix_log_max_pade_degree<Scalar>::value;
 | 
			
		||||
  const RealScalar maxNormForPade = maxPadeDegree<= 5? 5.3149729967117310e-1L:                    // single precision
 | 
			
		||||
                                    maxPadeDegree<= 7? 2.6429608311114350e-1L:                    // double precision
 | 
			
		||||
                                    maxPadeDegree<= 8? 2.32777776523703892094e-1L:                // extended precision
 | 
			
		||||
                                    maxPadeDegree<=10? 1.05026503471351080481093652651105e-1L:    // double-double
 | 
			
		||||
                                                       1.1880960220216759245467951592883642e-1L;  // quadruple precision
 | 
			
		||||
 | 
			
		||||
  while (true) {
 | 
			
		||||
    RealScalar normTminusI = (T - MatrixType::Identity(T.rows(), T.rows())).cwiseAbs().colwise().sum().maxCoeff();
 | 
			
		||||
    if (normTminusI < maxNormForPade) {
 | 
			
		||||
      degree = matrix_log_get_pade_degree(normTminusI);
 | 
			
		||||
      int degree2 = matrix_log_get_pade_degree(normTminusI / RealScalar(2));
 | 
			
		||||
      if ((degree - degree2 <= 1) || (numberOfExtraSquareRoots == 1)) 
 | 
			
		||||
        break;
 | 
			
		||||
      ++numberOfExtraSquareRoots;
 | 
			
		||||
    }
 | 
			
		||||
    matrix_sqrt_triangular(T, sqrtT);
 | 
			
		||||
    T = sqrtT.template triangularView<Upper>();
 | 
			
		||||
    ++numberOfSquareRoots;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  matrix_log_compute_pade(result, T, degree);
 | 
			
		||||
  result *= pow(RealScalar(2), numberOfSquareRoots);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** \ingroup MatrixFunctions_Module
 | 
			
		||||
  * \class MatrixLogarithmAtomic
 | 
			
		||||
  * \brief Helper class for computing matrix logarithm of atomic matrices.
 | 
			
		||||
  *
 | 
			
		||||
  * Here, an atomic matrix is a triangular matrix whose diagonal entries are close to each other.
 | 
			
		||||
  *
 | 
			
		||||
  * \sa class MatrixFunctionAtomic, MatrixBase::log()
 | 
			
		||||
  */
 | 
			
		||||
template <typename MatrixType>
 | 
			
		||||
class MatrixLogarithmAtomic
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  /** \brief Compute matrix logarithm of atomic matrix
 | 
			
		||||
    * \param[in]  A  argument of matrix logarithm, should be upper triangular and atomic
 | 
			
		||||
    * \returns  The logarithm of \p A.
 | 
			
		||||
    */
 | 
			
		||||
  MatrixType compute(const MatrixType& A);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <typename MatrixType>
 | 
			
		||||
MatrixType MatrixLogarithmAtomic<MatrixType>::compute(const MatrixType& A)
 | 
			
		||||
{
 | 
			
		||||
  using std::log;
 | 
			
		||||
  MatrixType result(A.rows(), A.rows());
 | 
			
		||||
  if (A.rows() == 1)
 | 
			
		||||
    result(0,0) = log(A(0,0));
 | 
			
		||||
  else if (A.rows() == 2)
 | 
			
		||||
    matrix_log_compute_2x2(A, result);
 | 
			
		||||
  else
 | 
			
		||||
    matrix_log_compute_big(A, result);
 | 
			
		||||
  return result;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
} // end of namespace internal
 | 
			
		||||
 | 
			
		||||
/** \ingroup MatrixFunctions_Module
 | 
			
		||||
  *
 | 
			
		||||
  * \brief Proxy for the matrix logarithm of some matrix (expression).
 | 
			
		||||
  *
 | 
			
		||||
  * \tparam Derived  Type of the argument to the matrix function.
 | 
			
		||||
  *
 | 
			
		||||
  * This class holds the argument to the matrix function until it is
 | 
			
		||||
  * assigned or evaluated for some other reason (so the argument
 | 
			
		||||
  * should not be changed in the meantime). It is the return type of
 | 
			
		||||
  * MatrixBase::log() and most of the time this is the only way it
 | 
			
		||||
  * is used.
 | 
			
		||||
  */
 | 
			
		||||
template<typename Derived> class MatrixLogarithmReturnValue
 | 
			
		||||
: public ReturnByValue<MatrixLogarithmReturnValue<Derived> >
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
  typedef typename Derived::Scalar Scalar;
 | 
			
		||||
  typedef typename Derived::Index Index;
 | 
			
		||||
 | 
			
		||||
protected:
 | 
			
		||||
  typedef typename internal::ref_selector<Derived>::type DerivedNested;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  /** \brief Constructor.
 | 
			
		||||
    *
 | 
			
		||||
    * \param[in]  A  %Matrix (expression) forming the argument of the matrix logarithm.
 | 
			
		||||
    */
 | 
			
		||||
  explicit MatrixLogarithmReturnValue(const Derived& A) : m_A(A) { }
 | 
			
		||||
  
 | 
			
		||||
  /** \brief Compute the matrix logarithm.
 | 
			
		||||
    *
 | 
			
		||||
    * \param[out]  result  Logarithm of \c A, where \c A is as specified in the constructor.
 | 
			
		||||
    */
 | 
			
		||||
  template <typename ResultType>
 | 
			
		||||
  inline void evalTo(ResultType& result) const
 | 
			
		||||
  {
 | 
			
		||||
    typedef typename internal::nested_eval<Derived, 10>::type DerivedEvalType;
 | 
			
		||||
    typedef typename internal::remove_all<DerivedEvalType>::type DerivedEvalTypeClean;
 | 
			
		||||
    typedef internal::traits<DerivedEvalTypeClean> Traits;
 | 
			
		||||
    static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
 | 
			
		||||
    static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
 | 
			
		||||
    typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
 | 
			
		||||
    typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
 | 
			
		||||
    typedef internal::MatrixLogarithmAtomic<DynMatrixType> AtomicType;
 | 
			
		||||
    AtomicType atomic;
 | 
			
		||||
    
 | 
			
		||||
    internal::matrix_function_compute<typename DerivedEvalTypeClean::PlainObject>::run(m_A, atomic, result);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  Index rows() const { return m_A.rows(); }
 | 
			
		||||
  Index cols() const { return m_A.cols(); }
 | 
			
		||||
  
 | 
			
		||||
private:
 | 
			
		||||
  const DerivedNested m_A;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
namespace internal {
 | 
			
		||||
  template<typename Derived>
 | 
			
		||||
  struct traits<MatrixLogarithmReturnValue<Derived> >
 | 
			
		||||
  {
 | 
			
		||||
    typedef typename Derived::PlainObject ReturnType;
 | 
			
		||||
  };
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/********** MatrixBase method **********/
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template <typename Derived>
 | 
			
		||||
const MatrixLogarithmReturnValue<Derived> MatrixBase<Derived>::log() const
 | 
			
		||||
{
 | 
			
		||||
  eigen_assert(rows() == cols());
 | 
			
		||||
  return MatrixLogarithmReturnValue<Derived>(derived());
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
} // end namespace Eigen
 | 
			
		||||
 | 
			
		||||
#endif // EIGEN_MATRIX_LOGARITHM
 | 
			
		||||
							
								
								
									
										709
									
								
								external/include/eigen3/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										709
									
								
								external/include/eigen3/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@@ -0,0 +1,709 @@
 | 
			
		||||
// This file is part of Eigen, a lightweight C++ template library
 | 
			
		||||
// for linear algebra.
 | 
			
		||||
//
 | 
			
		||||
// Copyright (C) 2012, 2013 Chen-Pang He <jdh8@ms63.hinet.net>
 | 
			
		||||
//
 | 
			
		||||
// This Source Code Form is subject to the terms of the Mozilla
 | 
			
		||||
// Public License v. 2.0. If a copy of the MPL was not distributed
 | 
			
		||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | 
			
		||||
 | 
			
		||||
#ifndef EIGEN_MATRIX_POWER
 | 
			
		||||
#define EIGEN_MATRIX_POWER
 | 
			
		||||
 | 
			
		||||
namespace Eigen {
 | 
			
		||||
 | 
			
		||||
template<typename MatrixType> class MatrixPower;
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * \ingroup MatrixFunctions_Module
 | 
			
		||||
 *
 | 
			
		||||
 * \brief Proxy for the matrix power of some matrix.
 | 
			
		||||
 *
 | 
			
		||||
 * \tparam MatrixType  type of the base, a matrix.
 | 
			
		||||
 *
 | 
			
		||||
 * This class holds the arguments to the matrix power until it is
 | 
			
		||||
 * assigned or evaluated for some other reason (so the argument
 | 
			
		||||
 * should not be changed in the meantime). It is the return type of
 | 
			
		||||
 * MatrixPower::operator() and related functions and most of the
 | 
			
		||||
 * time this is the only way it is used.
 | 
			
		||||
 */
 | 
			
		||||
/* TODO This class is only used by MatrixPower, so it should be nested
 | 
			
		||||
 * into MatrixPower, like MatrixPower::ReturnValue. However, my
 | 
			
		||||
 * compiler complained about unused template parameter in the
 | 
			
		||||
 * following declaration in namespace internal.
 | 
			
		||||
 *
 | 
			
		||||
 * template<typename MatrixType>
 | 
			
		||||
 * struct traits<MatrixPower<MatrixType>::ReturnValue>;
 | 
			
		||||
 */
 | 
			
		||||
template<typename MatrixType>
 | 
			
		||||
class MatrixPowerParenthesesReturnValue : public ReturnByValue< MatrixPowerParenthesesReturnValue<MatrixType> >
 | 
			
		||||
{
 | 
			
		||||
  public:
 | 
			
		||||
    typedef typename MatrixType::RealScalar RealScalar;
 | 
			
		||||
    typedef typename MatrixType::Index Index;
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
     * \brief Constructor.
 | 
			
		||||
     *
 | 
			
		||||
     * \param[in] pow  %MatrixPower storing the base.
 | 
			
		||||
     * \param[in] p    scalar, the exponent of the matrix power.
 | 
			
		||||
     */
 | 
			
		||||
    MatrixPowerParenthesesReturnValue(MatrixPower<MatrixType>& pow, RealScalar p) : m_pow(pow), m_p(p)
 | 
			
		||||
    { }
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
     * \brief Compute the matrix power.
 | 
			
		||||
     *
 | 
			
		||||
     * \param[out] result
 | 
			
		||||
     */
 | 
			
		||||
    template<typename ResultType>
 | 
			
		||||
    inline void evalTo(ResultType& result) const
 | 
			
		||||
    { m_pow.compute(result, m_p); }
 | 
			
		||||
 | 
			
		||||
    Index rows() const { return m_pow.rows(); }
 | 
			
		||||
    Index cols() const { return m_pow.cols(); }
 | 
			
		||||
 | 
			
		||||
  private:
 | 
			
		||||
    MatrixPower<MatrixType>& m_pow;
 | 
			
		||||
    const RealScalar m_p;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * \ingroup MatrixFunctions_Module
 | 
			
		||||
 *
 | 
			
		||||
 * \brief Class for computing matrix powers.
 | 
			
		||||
 *
 | 
			
		||||
 * \tparam MatrixType  type of the base, expected to be an instantiation
 | 
			
		||||
 * of the Matrix class template.
 | 
			
		||||
 *
 | 
			
		||||
 * This class is capable of computing triangular real/complex matrices
 | 
			
		||||
 * raised to a power in the interval \f$ (-1, 1) \f$.
 | 
			
		||||
 *
 | 
			
		||||
 * \note Currently this class is only used by MatrixPower. One may
 | 
			
		||||
 * insist that this be nested into MatrixPower. This class is here to
 | 
			
		||||
 * faciliate future development of triangular matrix functions.
 | 
			
		||||
 */
 | 
			
		||||
template<typename MatrixType>
 | 
			
		||||
class MatrixPowerAtomic : internal::noncopyable
 | 
			
		||||
{
 | 
			
		||||
  private:
 | 
			
		||||
    enum {
 | 
			
		||||
      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
 | 
			
		||||
      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
 | 
			
		||||
    };
 | 
			
		||||
    typedef typename MatrixType::Scalar Scalar;
 | 
			
		||||
    typedef typename MatrixType::RealScalar RealScalar;
 | 
			
		||||
    typedef std::complex<RealScalar> ComplexScalar;
 | 
			
		||||
    typedef typename MatrixType::Index Index;
 | 
			
		||||
    typedef Block<MatrixType,Dynamic,Dynamic> ResultType;
 | 
			
		||||
 | 
			
		||||
    const MatrixType& m_A;
 | 
			
		||||
    RealScalar m_p;
 | 
			
		||||
 | 
			
		||||
    void computePade(int degree, const MatrixType& IminusT, ResultType& res) const;
 | 
			
		||||
    void compute2x2(ResultType& res, RealScalar p) const;
 | 
			
		||||
    void computeBig(ResultType& res) const;
 | 
			
		||||
    static int getPadeDegree(float normIminusT);
 | 
			
		||||
    static int getPadeDegree(double normIminusT);
 | 
			
		||||
    static int getPadeDegree(long double normIminusT);
 | 
			
		||||
    static ComplexScalar computeSuperDiag(const ComplexScalar&, const ComplexScalar&, RealScalar p);
 | 
			
		||||
    static RealScalar computeSuperDiag(RealScalar, RealScalar, RealScalar p);
 | 
			
		||||
 | 
			
		||||
  public:
 | 
			
		||||
    /**
 | 
			
		||||
     * \brief Constructor.
 | 
			
		||||
     *
 | 
			
		||||
     * \param[in] T  the base of the matrix power.
 | 
			
		||||
     * \param[in] p  the exponent of the matrix power, should be in
 | 
			
		||||
     * \f$ (-1, 1) \f$.
 | 
			
		||||
     *
 | 
			
		||||
     * The class stores a reference to T, so it should not be changed
 | 
			
		||||
     * (or destroyed) before evaluation. Only the upper triangular
 | 
			
		||||
     * part of T is read.
 | 
			
		||||
     */
 | 
			
		||||
    MatrixPowerAtomic(const MatrixType& T, RealScalar p);
 | 
			
		||||
    
 | 
			
		||||
    /**
 | 
			
		||||
     * \brief Compute the matrix power.
 | 
			
		||||
     *
 | 
			
		||||
     * \param[out] res  \f$ A^p \f$ where A and p are specified in the
 | 
			
		||||
     * constructor.
 | 
			
		||||
     */
 | 
			
		||||
    void compute(ResultType& res) const;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<typename MatrixType>
 | 
			
		||||
MatrixPowerAtomic<MatrixType>::MatrixPowerAtomic(const MatrixType& T, RealScalar p) :
 | 
			
		||||
  m_A(T), m_p(p)
 | 
			
		||||
{
 | 
			
		||||
  eigen_assert(T.rows() == T.cols());
 | 
			
		||||
  eigen_assert(p > -1 && p < 1);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<typename MatrixType>
 | 
			
		||||
void MatrixPowerAtomic<MatrixType>::compute(ResultType& res) const
 | 
			
		||||
{
 | 
			
		||||
  using std::pow;
 | 
			
		||||
  switch (m_A.rows()) {
 | 
			
		||||
    case 0:
 | 
			
		||||
      break;
 | 
			
		||||
    case 1:
 | 
			
		||||
      res(0,0) = pow(m_A(0,0), m_p);
 | 
			
		||||
      break;
 | 
			
		||||
    case 2:
 | 
			
		||||
      compute2x2(res, m_p);
 | 
			
		||||
      break;
 | 
			
		||||
    default:
 | 
			
		||||
      computeBig(res);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<typename MatrixType>
 | 
			
		||||
void MatrixPowerAtomic<MatrixType>::computePade(int degree, const MatrixType& IminusT, ResultType& res) const
 | 
			
		||||
{
 | 
			
		||||
  int i = 2*degree;
 | 
			
		||||
  res = (m_p-degree) / (2*i-2) * IminusT;
 | 
			
		||||
 | 
			
		||||
  for (--i; i; --i) {
 | 
			
		||||
    res = (MatrixType::Identity(IminusT.rows(), IminusT.cols()) + res).template triangularView<Upper>()
 | 
			
		||||
	.solve((i==1 ? -m_p : i&1 ? (-m_p-i/2)/(2*i) : (m_p-i/2)/(2*i-2)) * IminusT).eval();
 | 
			
		||||
  }
 | 
			
		||||
  res += MatrixType::Identity(IminusT.rows(), IminusT.cols());
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// This function assumes that res has the correct size (see bug 614)
 | 
			
		||||
template<typename MatrixType>
 | 
			
		||||
void MatrixPowerAtomic<MatrixType>::compute2x2(ResultType& res, RealScalar p) const
 | 
			
		||||
{
 | 
			
		||||
  using std::abs;
 | 
			
		||||
  using std::pow;
 | 
			
		||||
  res.coeffRef(0,0) = pow(m_A.coeff(0,0), p);
 | 
			
		||||
 | 
			
		||||
  for (Index i=1; i < m_A.cols(); ++i) {
 | 
			
		||||
    res.coeffRef(i,i) = pow(m_A.coeff(i,i), p);
 | 
			
		||||
    if (m_A.coeff(i-1,i-1) == m_A.coeff(i,i))
 | 
			
		||||
      res.coeffRef(i-1,i) = p * pow(m_A.coeff(i,i), p-1);
 | 
			
		||||
    else if (2*abs(m_A.coeff(i-1,i-1)) < abs(m_A.coeff(i,i)) || 2*abs(m_A.coeff(i,i)) < abs(m_A.coeff(i-1,i-1)))
 | 
			
		||||
      res.coeffRef(i-1,i) = (res.coeff(i,i)-res.coeff(i-1,i-1)) / (m_A.coeff(i,i)-m_A.coeff(i-1,i-1));
 | 
			
		||||
    else
 | 
			
		||||
      res.coeffRef(i-1,i) = computeSuperDiag(m_A.coeff(i,i), m_A.coeff(i-1,i-1), p);
 | 
			
		||||
    res.coeffRef(i-1,i) *= m_A.coeff(i-1,i);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<typename MatrixType>
 | 
			
		||||
void MatrixPowerAtomic<MatrixType>::computeBig(ResultType& res) const
 | 
			
		||||
{
 | 
			
		||||
  using std::ldexp;
 | 
			
		||||
  const int digits = std::numeric_limits<RealScalar>::digits;
 | 
			
		||||
  const RealScalar maxNormForPade = digits <=  24? 4.3386528e-1L                            // single precision
 | 
			
		||||
                                  : digits <=  53? 2.789358995219730e-1L                    // double precision
 | 
			
		||||
                                  : digits <=  64? 2.4471944416607995472e-1L                // extended precision
 | 
			
		||||
                                  : digits <= 106? 1.1016843812851143391275867258512e-1L    // double-double
 | 
			
		||||
                                  :                9.134603732914548552537150753385375e-2L; // quadruple precision
 | 
			
		||||
  MatrixType IminusT, sqrtT, T = m_A.template triangularView<Upper>();
 | 
			
		||||
  RealScalar normIminusT;
 | 
			
		||||
  int degree, degree2, numberOfSquareRoots = 0;
 | 
			
		||||
  bool hasExtraSquareRoot = false;
 | 
			
		||||
 | 
			
		||||
  for (Index i=0; i < m_A.cols(); ++i)
 | 
			
		||||
    eigen_assert(m_A(i,i) != RealScalar(0));
 | 
			
		||||
 | 
			
		||||
  while (true) {
 | 
			
		||||
    IminusT = MatrixType::Identity(m_A.rows(), m_A.cols()) - T;
 | 
			
		||||
    normIminusT = IminusT.cwiseAbs().colwise().sum().maxCoeff();
 | 
			
		||||
    if (normIminusT < maxNormForPade) {
 | 
			
		||||
      degree = getPadeDegree(normIminusT);
 | 
			
		||||
      degree2 = getPadeDegree(normIminusT/2);
 | 
			
		||||
      if (degree - degree2 <= 1 || hasExtraSquareRoot)
 | 
			
		||||
	break;
 | 
			
		||||
      hasExtraSquareRoot = true;
 | 
			
		||||
    }
 | 
			
		||||
    matrix_sqrt_triangular(T, sqrtT);
 | 
			
		||||
    T = sqrtT.template triangularView<Upper>();
 | 
			
		||||
    ++numberOfSquareRoots;
 | 
			
		||||
  }
 | 
			
		||||
  computePade(degree, IminusT, res);
 | 
			
		||||
 | 
			
		||||
  for (; numberOfSquareRoots; --numberOfSquareRoots) {
 | 
			
		||||
    compute2x2(res, ldexp(m_p, -numberOfSquareRoots));
 | 
			
		||||
    res = res.template triangularView<Upper>() * res;
 | 
			
		||||
  }
 | 
			
		||||
  compute2x2(res, m_p);
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
template<typename MatrixType>
 | 
			
		||||
inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(float normIminusT)
 | 
			
		||||
{
 | 
			
		||||
  const float maxNormForPade[] = { 2.8064004e-1f /* degree = 3 */ , 4.3386528e-1f };
 | 
			
		||||
  int degree = 3;
 | 
			
		||||
  for (; degree <= 4; ++degree)
 | 
			
		||||
    if (normIminusT <= maxNormForPade[degree - 3])
 | 
			
		||||
      break;
 | 
			
		||||
  return degree;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<typename MatrixType>
 | 
			
		||||
inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(double normIminusT)
 | 
			
		||||
{
 | 
			
		||||
  const double maxNormForPade[] = { 1.884160592658218e-2 /* degree = 3 */ , 6.038881904059573e-2, 1.239917516308172e-1,
 | 
			
		||||
      1.999045567181744e-1, 2.789358995219730e-1 };
 | 
			
		||||
  int degree = 3;
 | 
			
		||||
  for (; degree <= 7; ++degree)
 | 
			
		||||
    if (normIminusT <= maxNormForPade[degree - 3])
 | 
			
		||||
      break;
 | 
			
		||||
  return degree;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<typename MatrixType>
 | 
			
		||||
inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(long double normIminusT)
 | 
			
		||||
{
 | 
			
		||||
#if   LDBL_MANT_DIG == 53
 | 
			
		||||
  const int maxPadeDegree = 7;
 | 
			
		||||
  const double maxNormForPade[] = { 1.884160592658218e-2L /* degree = 3 */ , 6.038881904059573e-2L, 1.239917516308172e-1L,
 | 
			
		||||
      1.999045567181744e-1L, 2.789358995219730e-1L };
 | 
			
		||||
#elif LDBL_MANT_DIG <= 64
 | 
			
		||||
  const int maxPadeDegree = 8;
 | 
			
		||||
  const long double maxNormForPade[] = { 6.3854693117491799460e-3L /* degree = 3 */ , 2.6394893435456973676e-2L,
 | 
			
		||||
      6.4216043030404063729e-2L, 1.1701165502926694307e-1L, 1.7904284231268670284e-1L, 2.4471944416607995472e-1L };
 | 
			
		||||
#elif LDBL_MANT_DIG <= 106
 | 
			
		||||
  const int maxPadeDegree = 10;
 | 
			
		||||
  const double maxNormForPade[] = { 1.0007161601787493236741409687186e-4L /* degree = 3 */ ,
 | 
			
		||||
      1.0007161601787493236741409687186e-3L, 4.7069769360887572939882574746264e-3L, 1.3220386624169159689406653101695e-2L,
 | 
			
		||||
      2.8063482381631737920612944054906e-2L, 4.9625993951953473052385361085058e-2L, 7.7367040706027886224557538328171e-2L,
 | 
			
		||||
      1.1016843812851143391275867258512e-1L };
 | 
			
		||||
#else
 | 
			
		||||
  const int maxPadeDegree = 10;
 | 
			
		||||
  const double maxNormForPade[] = { 5.524506147036624377378713555116378e-5L /* degree = 3 */ ,
 | 
			
		||||
      6.640600568157479679823602193345995e-4L, 3.227716520106894279249709728084626e-3L,
 | 
			
		||||
      9.619593944683432960546978734646284e-3L, 2.134595382433742403911124458161147e-2L,
 | 
			
		||||
      3.908166513900489428442993794761185e-2L, 6.266780814639442865832535460550138e-2L,
 | 
			
		||||
      9.134603732914548552537150753385375e-2L };
 | 
			
		||||
#endif
 | 
			
		||||
  int degree = 3;
 | 
			
		||||
  for (; degree <= maxPadeDegree; ++degree)
 | 
			
		||||
    if (normIminusT <= maxNormForPade[degree - 3])
 | 
			
		||||
      break;
 | 
			
		||||
  return degree;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<typename MatrixType>
 | 
			
		||||
inline typename MatrixPowerAtomic<MatrixType>::ComplexScalar
 | 
			
		||||
MatrixPowerAtomic<MatrixType>::computeSuperDiag(const ComplexScalar& curr, const ComplexScalar& prev, RealScalar p)
 | 
			
		||||
{
 | 
			
		||||
  using std::ceil;
 | 
			
		||||
  using std::exp;
 | 
			
		||||
  using std::log;
 | 
			
		||||
  using std::sinh;
 | 
			
		||||
 | 
			
		||||
  ComplexScalar logCurr = log(curr);
 | 
			
		||||
  ComplexScalar logPrev = log(prev);
 | 
			
		||||
  int unwindingNumber = ceil((numext::imag(logCurr - logPrev) - RealScalar(EIGEN_PI)) / RealScalar(2*EIGEN_PI));
 | 
			
		||||
  ComplexScalar w = numext::log1p((curr-prev)/prev)/RealScalar(2) + ComplexScalar(0, EIGEN_PI*unwindingNumber);
 | 
			
		||||
  return RealScalar(2) * exp(RealScalar(0.5) * p * (logCurr + logPrev)) * sinh(p * w) / (curr - prev);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<typename MatrixType>
 | 
			
		||||
inline typename MatrixPowerAtomic<MatrixType>::RealScalar
 | 
			
		||||
MatrixPowerAtomic<MatrixType>::computeSuperDiag(RealScalar curr, RealScalar prev, RealScalar p)
 | 
			
		||||
{
 | 
			
		||||
  using std::exp;
 | 
			
		||||
  using std::log;
 | 
			
		||||
  using std::sinh;
 | 
			
		||||
 | 
			
		||||
  RealScalar w = numext::log1p((curr-prev)/prev)/RealScalar(2);
 | 
			
		||||
  return 2 * exp(p * (log(curr) + log(prev)) / 2) * sinh(p * w) / (curr - prev);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * \ingroup MatrixFunctions_Module
 | 
			
		||||
 *
 | 
			
		||||
 * \brief Class for computing matrix powers.
 | 
			
		||||
 *
 | 
			
		||||
 * \tparam MatrixType  type of the base, expected to be an instantiation
 | 
			
		||||
 * of the Matrix class template.
 | 
			
		||||
 *
 | 
			
		||||
 * This class is capable of computing real/complex matrices raised to
 | 
			
		||||
 * an arbitrary real power. Meanwhile, it saves the result of Schur
 | 
			
		||||
 * decomposition if an non-integral power has even been calculated.
 | 
			
		||||
 * Therefore, if you want to compute multiple (>= 2) matrix powers
 | 
			
		||||
 * for the same matrix, using the class directly is more efficient than
 | 
			
		||||
 * calling MatrixBase::pow().
 | 
			
		||||
 *
 | 
			
		||||
 * Example:
 | 
			
		||||
 * \include MatrixPower_optimal.cpp
 | 
			
		||||
 * Output: \verbinclude MatrixPower_optimal.out
 | 
			
		||||
 */
 | 
			
		||||
template<typename MatrixType>
 | 
			
		||||
class MatrixPower : internal::noncopyable
 | 
			
		||||
{
 | 
			
		||||
  private:
 | 
			
		||||
    typedef typename MatrixType::Scalar Scalar;
 | 
			
		||||
    typedef typename MatrixType::RealScalar RealScalar;
 | 
			
		||||
    typedef typename MatrixType::Index Index;
 | 
			
		||||
 | 
			
		||||
  public:
 | 
			
		||||
    /**
 | 
			
		||||
     * \brief Constructor.
 | 
			
		||||
     *
 | 
			
		||||
     * \param[in] A  the base of the matrix power.
 | 
			
		||||
     *
 | 
			
		||||
     * The class stores a reference to A, so it should not be changed
 | 
			
		||||
     * (or destroyed) before evaluation.
 | 
			
		||||
     */
 | 
			
		||||
    explicit MatrixPower(const MatrixType& A) :
 | 
			
		||||
      m_A(A),
 | 
			
		||||
      m_conditionNumber(0),
 | 
			
		||||
      m_rank(A.cols()),
 | 
			
		||||
      m_nulls(0)
 | 
			
		||||
    { eigen_assert(A.rows() == A.cols()); }
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
     * \brief Returns the matrix power.
 | 
			
		||||
     *
 | 
			
		||||
     * \param[in] p  exponent, a real scalar.
 | 
			
		||||
     * \return The expression \f$ A^p \f$, where A is specified in the
 | 
			
		||||
     * constructor.
 | 
			
		||||
     */
 | 
			
		||||
    const MatrixPowerParenthesesReturnValue<MatrixType> operator()(RealScalar p)
 | 
			
		||||
    { return MatrixPowerParenthesesReturnValue<MatrixType>(*this, p); }
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
     * \brief Compute the matrix power.
 | 
			
		||||
     *
 | 
			
		||||
     * \param[in]  p    exponent, a real scalar.
 | 
			
		||||
     * \param[out] res  \f$ A^p \f$ where A is specified in the
 | 
			
		||||
     * constructor.
 | 
			
		||||
     */
 | 
			
		||||
    template<typename ResultType>
 | 
			
		||||
    void compute(ResultType& res, RealScalar p);
 | 
			
		||||
    
 | 
			
		||||
    Index rows() const { return m_A.rows(); }
 | 
			
		||||
    Index cols() const { return m_A.cols(); }
 | 
			
		||||
 | 
			
		||||
  private:
 | 
			
		||||
    typedef std::complex<RealScalar> ComplexScalar;
 | 
			
		||||
    typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0,
 | 
			
		||||
              MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> ComplexMatrix;
 | 
			
		||||
 | 
			
		||||
    /** \brief Reference to the base of matrix power. */
 | 
			
		||||
    typename MatrixType::Nested m_A;
 | 
			
		||||
 | 
			
		||||
    /** \brief Temporary storage. */
 | 
			
		||||
    MatrixType m_tmp;
 | 
			
		||||
 | 
			
		||||
    /** \brief Store the result of Schur decomposition. */
 | 
			
		||||
    ComplexMatrix m_T, m_U;
 | 
			
		||||
    
 | 
			
		||||
    /** \brief Store fractional power of m_T. */
 | 
			
		||||
    ComplexMatrix m_fT;
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
     * \brief Condition number of m_A.
 | 
			
		||||
     *
 | 
			
		||||
     * It is initialized as 0 to avoid performing unnecessary Schur
 | 
			
		||||
     * decomposition, which is the bottleneck.
 | 
			
		||||
     */
 | 
			
		||||
    RealScalar m_conditionNumber;
 | 
			
		||||
 | 
			
		||||
    /** \brief Rank of m_A. */
 | 
			
		||||
    Index m_rank;
 | 
			
		||||
    
 | 
			
		||||
    /** \brief Rank deficiency of m_A. */
 | 
			
		||||
    Index m_nulls;
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
     * \brief Split p into integral part and fractional part.
 | 
			
		||||
     *
 | 
			
		||||
     * \param[in]  p        The exponent.
 | 
			
		||||
     * \param[out] p        The fractional part ranging in \f$ (-1, 1) \f$.
 | 
			
		||||
     * \param[out] intpart  The integral part.
 | 
			
		||||
     *
 | 
			
		||||
     * Only if the fractional part is nonzero, it calls initialize().
 | 
			
		||||
     */
 | 
			
		||||
    void split(RealScalar& p, RealScalar& intpart);
 | 
			
		||||
 | 
			
		||||
    /** \brief Perform Schur decomposition for fractional power. */
 | 
			
		||||
    void initialize();
 | 
			
		||||
 | 
			
		||||
    template<typename ResultType>
 | 
			
		||||
    void computeIntPower(ResultType& res, RealScalar p);
 | 
			
		||||
 | 
			
		||||
    template<typename ResultType>
 | 
			
		||||
    void computeFracPower(ResultType& res, RealScalar p);
 | 
			
		||||
 | 
			
		||||
    template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
 | 
			
		||||
    static void revertSchur(
 | 
			
		||||
        Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
 | 
			
		||||
        const ComplexMatrix& T,
 | 
			
		||||
        const ComplexMatrix& U);
 | 
			
		||||
 | 
			
		||||
    template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
 | 
			
		||||
    static void revertSchur(
 | 
			
		||||
        Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
 | 
			
		||||
        const ComplexMatrix& T,
 | 
			
		||||
        const ComplexMatrix& U);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<typename MatrixType>
 | 
			
		||||
template<typename ResultType>
 | 
			
		||||
void MatrixPower<MatrixType>::compute(ResultType& res, RealScalar p)
 | 
			
		||||
{
 | 
			
		||||
  using std::pow;
 | 
			
		||||
  switch (cols()) {
 | 
			
		||||
    case 0:
 | 
			
		||||
      break;
 | 
			
		||||
    case 1:
 | 
			
		||||
      res(0,0) = pow(m_A.coeff(0,0), p);
 | 
			
		||||
      break;
 | 
			
		||||
    default:
 | 
			
		||||
      RealScalar intpart;
 | 
			
		||||
      split(p, intpart);
 | 
			
		||||
 | 
			
		||||
      res = MatrixType::Identity(rows(), cols());
 | 
			
		||||
      computeIntPower(res, intpart);
 | 
			
		||||
      if (p) computeFracPower(res, p);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<typename MatrixType>
 | 
			
		||||
void MatrixPower<MatrixType>::split(RealScalar& p, RealScalar& intpart)
 | 
			
		||||
{
 | 
			
		||||
  using std::floor;
 | 
			
		||||
  using std::pow;
 | 
			
		||||
 | 
			
		||||
  intpart = floor(p);
 | 
			
		||||
  p -= intpart;
 | 
			
		||||
 | 
			
		||||
  // Perform Schur decomposition if it is not yet performed and the power is
 | 
			
		||||
  // not an integer.
 | 
			
		||||
  if (!m_conditionNumber && p)
 | 
			
		||||
    initialize();
 | 
			
		||||
 | 
			
		||||
  // Choose the more stable of intpart = floor(p) and intpart = ceil(p).
 | 
			
		||||
  if (p > RealScalar(0.5) && p > (1-p) * pow(m_conditionNumber, p)) {
 | 
			
		||||
    --p;
 | 
			
		||||
    ++intpart;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<typename MatrixType>
 | 
			
		||||
void MatrixPower<MatrixType>::initialize()
 | 
			
		||||
{
 | 
			
		||||
  const ComplexSchur<MatrixType> schurOfA(m_A);
 | 
			
		||||
  JacobiRotation<ComplexScalar> rot;
 | 
			
		||||
  ComplexScalar eigenvalue;
 | 
			
		||||
 | 
			
		||||
  m_fT.resizeLike(m_A);
 | 
			
		||||
  m_T = schurOfA.matrixT();
 | 
			
		||||
  m_U = schurOfA.matrixU();
 | 
			
		||||
  m_conditionNumber = m_T.diagonal().array().abs().maxCoeff() / m_T.diagonal().array().abs().minCoeff();
 | 
			
		||||
 | 
			
		||||
  // Move zero eigenvalues to the bottom right corner.
 | 
			
		||||
  for (Index i = cols()-1; i>=0; --i) {
 | 
			
		||||
    if (m_rank <= 2)
 | 
			
		||||
      return;
 | 
			
		||||
    if (m_T.coeff(i,i) == RealScalar(0)) {
 | 
			
		||||
      for (Index j=i+1; j < m_rank; ++j) {
 | 
			
		||||
        eigenvalue = m_T.coeff(j,j);
 | 
			
		||||
        rot.makeGivens(m_T.coeff(j-1,j), eigenvalue);
 | 
			
		||||
        m_T.applyOnTheRight(j-1, j, rot);
 | 
			
		||||
        m_T.applyOnTheLeft(j-1, j, rot.adjoint());
 | 
			
		||||
        m_T.coeffRef(j-1,j-1) = eigenvalue;
 | 
			
		||||
        m_T.coeffRef(j,j) = RealScalar(0);
 | 
			
		||||
        m_U.applyOnTheRight(j-1, j, rot);
 | 
			
		||||
      }
 | 
			
		||||
      --m_rank;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  m_nulls = rows() - m_rank;
 | 
			
		||||
  if (m_nulls) {
 | 
			
		||||
    eigen_assert(m_T.bottomRightCorner(m_nulls, m_nulls).isZero()
 | 
			
		||||
        && "Base of matrix power should be invertible or with a semisimple zero eigenvalue.");
 | 
			
		||||
    m_fT.bottomRows(m_nulls).fill(RealScalar(0));
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<typename MatrixType>
 | 
			
		||||
template<typename ResultType>
 | 
			
		||||
void MatrixPower<MatrixType>::computeIntPower(ResultType& res, RealScalar p)
 | 
			
		||||
{
 | 
			
		||||
  using std::abs;
 | 
			
		||||
  using std::fmod;
 | 
			
		||||
  RealScalar pp = abs(p);
 | 
			
		||||
 | 
			
		||||
  if (p<0) 
 | 
			
		||||
    m_tmp = m_A.inverse();
 | 
			
		||||
  else     
 | 
			
		||||
    m_tmp = m_A;
 | 
			
		||||
 | 
			
		||||
  while (true) {
 | 
			
		||||
    if (fmod(pp, 2) >= 1)
 | 
			
		||||
      res = m_tmp * res;
 | 
			
		||||
    pp /= 2;
 | 
			
		||||
    if (pp < 1)
 | 
			
		||||
      break;
 | 
			
		||||
    m_tmp *= m_tmp;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<typename MatrixType>
 | 
			
		||||
template<typename ResultType>
 | 
			
		||||
void MatrixPower<MatrixType>::computeFracPower(ResultType& res, RealScalar p)
 | 
			
		||||
{
 | 
			
		||||
  Block<ComplexMatrix,Dynamic,Dynamic> blockTp(m_fT, 0, 0, m_rank, m_rank);
 | 
			
		||||
  eigen_assert(m_conditionNumber);
 | 
			
		||||
  eigen_assert(m_rank + m_nulls == rows());
 | 
			
		||||
 | 
			
		||||
  MatrixPowerAtomic<ComplexMatrix>(m_T.topLeftCorner(m_rank, m_rank), p).compute(blockTp);
 | 
			
		||||
  if (m_nulls) {
 | 
			
		||||
    m_fT.topRightCorner(m_rank, m_nulls) = m_T.topLeftCorner(m_rank, m_rank).template triangularView<Upper>()
 | 
			
		||||
        .solve(blockTp * m_T.topRightCorner(m_rank, m_nulls));
 | 
			
		||||
  }
 | 
			
		||||
  revertSchur(m_tmp, m_fT, m_U);
 | 
			
		||||
  res = m_tmp * res;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<typename MatrixType>
 | 
			
		||||
template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
 | 
			
		||||
inline void MatrixPower<MatrixType>::revertSchur(
 | 
			
		||||
    Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
 | 
			
		||||
    const ComplexMatrix& T,
 | 
			
		||||
    const ComplexMatrix& U)
 | 
			
		||||
{ res.noalias() = U * (T.template triangularView<Upper>() * U.adjoint()); }
 | 
			
		||||
 | 
			
		||||
template<typename MatrixType>
 | 
			
		||||
template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
 | 
			
		||||
inline void MatrixPower<MatrixType>::revertSchur(
 | 
			
		||||
    Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
 | 
			
		||||
    const ComplexMatrix& T,
 | 
			
		||||
    const ComplexMatrix& U)
 | 
			
		||||
{ res.noalias() = (U * (T.template triangularView<Upper>() * U.adjoint())).real(); }
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * \ingroup MatrixFunctions_Module
 | 
			
		||||
 *
 | 
			
		||||
 * \brief Proxy for the matrix power of some matrix (expression).
 | 
			
		||||
 *
 | 
			
		||||
 * \tparam Derived  type of the base, a matrix (expression).
 | 
			
		||||
 *
 | 
			
		||||
 * This class holds the arguments to the matrix power until it is
 | 
			
		||||
 * assigned or evaluated for some other reason (so the argument
 | 
			
		||||
 * should not be changed in the meantime). It is the return type of
 | 
			
		||||
 * MatrixBase::pow() and related functions and most of the
 | 
			
		||||
 * time this is the only way it is used.
 | 
			
		||||
 */
 | 
			
		||||
template<typename Derived>
 | 
			
		||||
class MatrixPowerReturnValue : public ReturnByValue< MatrixPowerReturnValue<Derived> >
 | 
			
		||||
{
 | 
			
		||||
  public:
 | 
			
		||||
    typedef typename Derived::PlainObject PlainObject;
 | 
			
		||||
    typedef typename Derived::RealScalar RealScalar;
 | 
			
		||||
    typedef typename Derived::Index Index;
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
     * \brief Constructor.
 | 
			
		||||
     *
 | 
			
		||||
     * \param[in] A  %Matrix (expression), the base of the matrix power.
 | 
			
		||||
     * \param[in] p  real scalar, the exponent of the matrix power.
 | 
			
		||||
     */
 | 
			
		||||
    MatrixPowerReturnValue(const Derived& A, RealScalar p) : m_A(A), m_p(p)
 | 
			
		||||
    { }
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
     * \brief Compute the matrix power.
 | 
			
		||||
     *
 | 
			
		||||
     * \param[out] result  \f$ A^p \f$ where \p A and \p p are as in the
 | 
			
		||||
     * constructor.
 | 
			
		||||
     */
 | 
			
		||||
    template<typename ResultType>
 | 
			
		||||
    inline void evalTo(ResultType& result) const
 | 
			
		||||
    { MatrixPower<PlainObject>(m_A.eval()).compute(result, m_p); }
 | 
			
		||||
 | 
			
		||||
    Index rows() const { return m_A.rows(); }
 | 
			
		||||
    Index cols() const { return m_A.cols(); }
 | 
			
		||||
 | 
			
		||||
  private:
 | 
			
		||||
    const Derived& m_A;
 | 
			
		||||
    const RealScalar m_p;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * \ingroup MatrixFunctions_Module
 | 
			
		||||
 *
 | 
			
		||||
 * \brief Proxy for the matrix power of some matrix (expression).
 | 
			
		||||
 *
 | 
			
		||||
 * \tparam Derived  type of the base, a matrix (expression).
 | 
			
		||||
 *
 | 
			
		||||
 * This class holds the arguments to the matrix power until it is
 | 
			
		||||
 * assigned or evaluated for some other reason (so the argument
 | 
			
		||||
 * should not be changed in the meantime). It is the return type of
 | 
			
		||||
 * MatrixBase::pow() and related functions and most of the
 | 
			
		||||
 * time this is the only way it is used.
 | 
			
		||||
 */
 | 
			
		||||
template<typename Derived>
 | 
			
		||||
class MatrixComplexPowerReturnValue : public ReturnByValue< MatrixComplexPowerReturnValue<Derived> >
 | 
			
		||||
{
 | 
			
		||||
  public:
 | 
			
		||||
    typedef typename Derived::PlainObject PlainObject;
 | 
			
		||||
    typedef typename std::complex<typename Derived::RealScalar> ComplexScalar;
 | 
			
		||||
    typedef typename Derived::Index Index;
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
     * \brief Constructor.
 | 
			
		||||
     *
 | 
			
		||||
     * \param[in] A  %Matrix (expression), the base of the matrix power.
 | 
			
		||||
     * \param[in] p  complex scalar, the exponent of the matrix power.
 | 
			
		||||
     */
 | 
			
		||||
    MatrixComplexPowerReturnValue(const Derived& A, const ComplexScalar& p) : m_A(A), m_p(p)
 | 
			
		||||
    { }
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
     * \brief Compute the matrix power.
 | 
			
		||||
     *
 | 
			
		||||
     * Because \p p is complex, \f$ A^p \f$ is simply evaluated as \f$
 | 
			
		||||
     * \exp(p \log(A)) \f$.
 | 
			
		||||
     *
 | 
			
		||||
     * \param[out] result  \f$ A^p \f$ where \p A and \p p are as in the
 | 
			
		||||
     * constructor.
 | 
			
		||||
     */
 | 
			
		||||
    template<typename ResultType>
 | 
			
		||||
    inline void evalTo(ResultType& result) const
 | 
			
		||||
    { result = (m_p * m_A.log()).exp(); }
 | 
			
		||||
 | 
			
		||||
    Index rows() const { return m_A.rows(); }
 | 
			
		||||
    Index cols() const { return m_A.cols(); }
 | 
			
		||||
 | 
			
		||||
  private:
 | 
			
		||||
    const Derived& m_A;
 | 
			
		||||
    const ComplexScalar m_p;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
namespace internal {
 | 
			
		||||
 | 
			
		||||
template<typename MatrixPowerType>
 | 
			
		||||
struct traits< MatrixPowerParenthesesReturnValue<MatrixPowerType> >
 | 
			
		||||
{ typedef typename MatrixPowerType::PlainObject ReturnType; };
 | 
			
		||||
 | 
			
		||||
template<typename Derived>
 | 
			
		||||
struct traits< MatrixPowerReturnValue<Derived> >
 | 
			
		||||
{ typedef typename Derived::PlainObject ReturnType; };
 | 
			
		||||
 | 
			
		||||
template<typename Derived>
 | 
			
		||||
struct traits< MatrixComplexPowerReturnValue<Derived> >
 | 
			
		||||
{ typedef typename Derived::PlainObject ReturnType; };
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<typename Derived>
 | 
			
		||||
const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(const RealScalar& p) const
 | 
			
		||||
{ return MatrixPowerReturnValue<Derived>(derived(), p); }
 | 
			
		||||
 | 
			
		||||
template<typename Derived>
 | 
			
		||||
const MatrixComplexPowerReturnValue<Derived> MatrixBase<Derived>::pow(const std::complex<RealScalar>& p) const
 | 
			
		||||
{ return MatrixComplexPowerReturnValue<Derived>(derived(), p); }
 | 
			
		||||
 | 
			
		||||
} // namespace Eigen
 | 
			
		||||
 | 
			
		||||
#endif // EIGEN_MATRIX_POWER
 | 
			
		||||
							
								
								
									
										366
									
								
								external/include/eigen3/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										366
									
								
								external/include/eigen3/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@@ -0,0 +1,366 @@
 | 
			
		||||
// This file is part of Eigen, a lightweight C++ template library
 | 
			
		||||
// for linear algebra.
 | 
			
		||||
//
 | 
			
		||||
// Copyright (C) 2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
 | 
			
		||||
//
 | 
			
		||||
// This Source Code Form is subject to the terms of the Mozilla
 | 
			
		||||
// Public License v. 2.0. If a copy of the MPL was not distributed
 | 
			
		||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | 
			
		||||
 | 
			
		||||
#ifndef EIGEN_MATRIX_SQUARE_ROOT
 | 
			
		||||
#define EIGEN_MATRIX_SQUARE_ROOT
 | 
			
		||||
 | 
			
		||||
namespace Eigen { 
 | 
			
		||||
 | 
			
		||||
namespace internal {
 | 
			
		||||
 | 
			
		||||
// pre:  T.block(i,i,2,2) has complex conjugate eigenvalues
 | 
			
		||||
// post: sqrtT.block(i,i,2,2) is square root of T.block(i,i,2,2)
 | 
			
		||||
template <typename MatrixType, typename ResultType>
 | 
			
		||||
void matrix_sqrt_quasi_triangular_2x2_diagonal_block(const MatrixType& T, typename MatrixType::Index i, ResultType& sqrtT)
 | 
			
		||||
{
 | 
			
		||||
  // TODO: This case (2-by-2 blocks with complex conjugate eigenvalues) is probably hidden somewhere
 | 
			
		||||
  //       in EigenSolver. If we expose it, we could call it directly from here.
 | 
			
		||||
  typedef typename traits<MatrixType>::Scalar Scalar;
 | 
			
		||||
  Matrix<Scalar,2,2> block = T.template block<2,2>(i,i);
 | 
			
		||||
  EigenSolver<Matrix<Scalar,2,2> > es(block);
 | 
			
		||||
  sqrtT.template block<2,2>(i,i)
 | 
			
		||||
    = (es.eigenvectors() * es.eigenvalues().cwiseSqrt().asDiagonal() * es.eigenvectors().inverse()).real();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// pre:  block structure of T is such that (i,j) is a 1x1 block,
 | 
			
		||||
//       all blocks of sqrtT to left of and below (i,j) are correct
 | 
			
		||||
// post: sqrtT(i,j) has the correct value
 | 
			
		||||
template <typename MatrixType, typename ResultType>
 | 
			
		||||
void matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename traits<MatrixType>::Scalar Scalar;
 | 
			
		||||
  Scalar tmp = (sqrtT.row(i).segment(i+1,j-i-1) * sqrtT.col(j).segment(i+1,j-i-1)).value();
 | 
			
		||||
  sqrtT.coeffRef(i,j) = (T.coeff(i,j) - tmp) / (sqrtT.coeff(i,i) + sqrtT.coeff(j,j));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// similar to compute1x1offDiagonalBlock()
 | 
			
		||||
template <typename MatrixType, typename ResultType>
 | 
			
		||||
void matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename traits<MatrixType>::Scalar Scalar;
 | 
			
		||||
  Matrix<Scalar,1,2> rhs = T.template block<1,2>(i,j);
 | 
			
		||||
  if (j-i > 1)
 | 
			
		||||
    rhs -= sqrtT.block(i, i+1, 1, j-i-1) * sqrtT.block(i+1, j, j-i-1, 2);
 | 
			
		||||
  Matrix<Scalar,2,2> A = sqrtT.coeff(i,i) * Matrix<Scalar,2,2>::Identity();
 | 
			
		||||
  A += sqrtT.template block<2,2>(j,j).transpose();
 | 
			
		||||
  sqrtT.template block<1,2>(i,j).transpose() = A.fullPivLu().solve(rhs.transpose());
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// similar to compute1x1offDiagonalBlock()
 | 
			
		||||
template <typename MatrixType, typename ResultType>
 | 
			
		||||
void matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename traits<MatrixType>::Scalar Scalar;
 | 
			
		||||
  Matrix<Scalar,2,1> rhs = T.template block<2,1>(i,j);
 | 
			
		||||
  if (j-i > 2)
 | 
			
		||||
    rhs -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 1);
 | 
			
		||||
  Matrix<Scalar,2,2> A = sqrtT.coeff(j,j) * Matrix<Scalar,2,2>::Identity();
 | 
			
		||||
  A += sqrtT.template block<2,2>(i,i);
 | 
			
		||||
  sqrtT.template block<2,1>(i,j) = A.fullPivLu().solve(rhs);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// solves the equation A X + X B = C where all matrices are 2-by-2
 | 
			
		||||
template <typename MatrixType>
 | 
			
		||||
void matrix_sqrt_quasi_triangular_solve_auxiliary_equation(MatrixType& X, const MatrixType& A, const MatrixType& B, const MatrixType& C)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename traits<MatrixType>::Scalar Scalar;
 | 
			
		||||
  Matrix<Scalar,4,4> coeffMatrix = Matrix<Scalar,4,4>::Zero();
 | 
			
		||||
  coeffMatrix.coeffRef(0,0) = A.coeff(0,0) + B.coeff(0,0);
 | 
			
		||||
  coeffMatrix.coeffRef(1,1) = A.coeff(0,0) + B.coeff(1,1);
 | 
			
		||||
  coeffMatrix.coeffRef(2,2) = A.coeff(1,1) + B.coeff(0,0);
 | 
			
		||||
  coeffMatrix.coeffRef(3,3) = A.coeff(1,1) + B.coeff(1,1);
 | 
			
		||||
  coeffMatrix.coeffRef(0,1) = B.coeff(1,0);
 | 
			
		||||
  coeffMatrix.coeffRef(0,2) = A.coeff(0,1);
 | 
			
		||||
  coeffMatrix.coeffRef(1,0) = B.coeff(0,1);
 | 
			
		||||
  coeffMatrix.coeffRef(1,3) = A.coeff(0,1);
 | 
			
		||||
  coeffMatrix.coeffRef(2,0) = A.coeff(1,0);
 | 
			
		||||
  coeffMatrix.coeffRef(2,3) = B.coeff(1,0);
 | 
			
		||||
  coeffMatrix.coeffRef(3,1) = A.coeff(1,0);
 | 
			
		||||
  coeffMatrix.coeffRef(3,2) = B.coeff(0,1);
 | 
			
		||||
 | 
			
		||||
  Matrix<Scalar,4,1> rhs;
 | 
			
		||||
  rhs.coeffRef(0) = C.coeff(0,0);
 | 
			
		||||
  rhs.coeffRef(1) = C.coeff(0,1);
 | 
			
		||||
  rhs.coeffRef(2) = C.coeff(1,0);
 | 
			
		||||
  rhs.coeffRef(3) = C.coeff(1,1);
 | 
			
		||||
 | 
			
		||||
  Matrix<Scalar,4,1> result;
 | 
			
		||||
  result = coeffMatrix.fullPivLu().solve(rhs);
 | 
			
		||||
 | 
			
		||||
  X.coeffRef(0,0) = result.coeff(0);
 | 
			
		||||
  X.coeffRef(0,1) = result.coeff(1);
 | 
			
		||||
  X.coeffRef(1,0) = result.coeff(2);
 | 
			
		||||
  X.coeffRef(1,1) = result.coeff(3);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// similar to compute1x1offDiagonalBlock()
 | 
			
		||||
template <typename MatrixType, typename ResultType>
 | 
			
		||||
void matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename traits<MatrixType>::Scalar Scalar;
 | 
			
		||||
  Matrix<Scalar,2,2> A = sqrtT.template block<2,2>(i,i);
 | 
			
		||||
  Matrix<Scalar,2,2> B = sqrtT.template block<2,2>(j,j);
 | 
			
		||||
  Matrix<Scalar,2,2> C = T.template block<2,2>(i,j);
 | 
			
		||||
  if (j-i > 2)
 | 
			
		||||
    C -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 2);
 | 
			
		||||
  Matrix<Scalar,2,2> X;
 | 
			
		||||
  matrix_sqrt_quasi_triangular_solve_auxiliary_equation(X, A, B, C);
 | 
			
		||||
  sqrtT.template block<2,2>(i,j) = X;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// pre:  T is quasi-upper-triangular and sqrtT is a zero matrix of the same size
 | 
			
		||||
// post: the diagonal blocks of sqrtT are the square roots of the diagonal blocks of T
 | 
			
		||||
template <typename MatrixType, typename ResultType>
 | 
			
		||||
void matrix_sqrt_quasi_triangular_diagonal(const MatrixType& T, ResultType& sqrtT)
 | 
			
		||||
{
 | 
			
		||||
  using std::sqrt;
 | 
			
		||||
  const Index size = T.rows();
 | 
			
		||||
  for (Index i = 0; i < size; i++) {
 | 
			
		||||
    if (i == size - 1 || T.coeff(i+1, i) == 0) {
 | 
			
		||||
      eigen_assert(T(i,i) >= 0);
 | 
			
		||||
      sqrtT.coeffRef(i,i) = sqrt(T.coeff(i,i));
 | 
			
		||||
    }
 | 
			
		||||
    else {
 | 
			
		||||
      matrix_sqrt_quasi_triangular_2x2_diagonal_block(T, i, sqrtT);
 | 
			
		||||
      ++i;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// pre:  T is quasi-upper-triangular and diagonal blocks of sqrtT are square root of diagonal blocks of T.
 | 
			
		||||
// post: sqrtT is the square root of T.
 | 
			
		||||
template <typename MatrixType, typename ResultType>
 | 
			
		||||
void matrix_sqrt_quasi_triangular_off_diagonal(const MatrixType& T, ResultType& sqrtT)
 | 
			
		||||
{
 | 
			
		||||
  const Index size = T.rows();
 | 
			
		||||
  for (Index j = 1; j < size; j++) {
 | 
			
		||||
      if (T.coeff(j, j-1) != 0)  // if T(j-1:j, j-1:j) is a 2-by-2 block
 | 
			
		||||
	continue;
 | 
			
		||||
    for (Index i = j-1; i >= 0; i--) {
 | 
			
		||||
      if (i > 0 && T.coeff(i, i-1) != 0)  // if T(i-1:i, i-1:i) is a 2-by-2 block
 | 
			
		||||
	continue;
 | 
			
		||||
      bool iBlockIs2x2 = (i < size - 1) && (T.coeff(i+1, i) != 0);
 | 
			
		||||
      bool jBlockIs2x2 = (j < size - 1) && (T.coeff(j+1, j) != 0);
 | 
			
		||||
      if (iBlockIs2x2 && jBlockIs2x2) 
 | 
			
		||||
        matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(T, i, j, sqrtT);
 | 
			
		||||
      else if (iBlockIs2x2 && !jBlockIs2x2) 
 | 
			
		||||
        matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(T, i, j, sqrtT);
 | 
			
		||||
      else if (!iBlockIs2x2 && jBlockIs2x2) 
 | 
			
		||||
        matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(T, i, j, sqrtT);
 | 
			
		||||
      else if (!iBlockIs2x2 && !jBlockIs2x2) 
 | 
			
		||||
        matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(T, i, j, sqrtT);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
} // end of namespace internal
 | 
			
		||||
 | 
			
		||||
/** \ingroup MatrixFunctions_Module
 | 
			
		||||
  * \brief Compute matrix square root of quasi-triangular matrix.
 | 
			
		||||
  *
 | 
			
		||||
  * \tparam  MatrixType  type of \p arg, the argument of matrix square root,
 | 
			
		||||
  *                      expected to be an instantiation of the Matrix class template.
 | 
			
		||||
  * \tparam  ResultType  type of \p result, where result is to be stored.
 | 
			
		||||
  * \param[in]  arg      argument of matrix square root.
 | 
			
		||||
  * \param[out] result   matrix square root of upper Hessenberg part of \p arg.
 | 
			
		||||
  *
 | 
			
		||||
  * This function computes the square root of the upper quasi-triangular matrix stored in the upper
 | 
			
		||||
  * Hessenberg part of \p arg.  Only the upper Hessenberg part of \p result is updated, the rest is
 | 
			
		||||
  * not touched.  See MatrixBase::sqrt() for details on how this computation is implemented.
 | 
			
		||||
  *
 | 
			
		||||
  * \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular
 | 
			
		||||
  */
 | 
			
		||||
template <typename MatrixType, typename ResultType> 
 | 
			
		||||
void matrix_sqrt_quasi_triangular(const MatrixType &arg, ResultType &result)
 | 
			
		||||
{
 | 
			
		||||
  eigen_assert(arg.rows() == arg.cols());
 | 
			
		||||
  result.resize(arg.rows(), arg.cols());
 | 
			
		||||
  internal::matrix_sqrt_quasi_triangular_diagonal(arg, result);
 | 
			
		||||
  internal::matrix_sqrt_quasi_triangular_off_diagonal(arg, result);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/** \ingroup MatrixFunctions_Module
 | 
			
		||||
  * \brief Compute matrix square root of triangular matrix.
 | 
			
		||||
  *
 | 
			
		||||
  * \tparam  MatrixType  type of \p arg, the argument of matrix square root,
 | 
			
		||||
  *                      expected to be an instantiation of the Matrix class template.
 | 
			
		||||
  * \tparam  ResultType  type of \p result, where result is to be stored.
 | 
			
		||||
  * \param[in]  arg      argument of matrix square root.
 | 
			
		||||
  * \param[out] result   matrix square root of upper triangular part of \p arg.
 | 
			
		||||
  *
 | 
			
		||||
  * Only the upper triangular part (including the diagonal) of \p result is updated, the rest is not
 | 
			
		||||
  * touched.  See MatrixBase::sqrt() for details on how this computation is implemented.
 | 
			
		||||
  *
 | 
			
		||||
  * \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular
 | 
			
		||||
  */
 | 
			
		||||
template <typename MatrixType, typename ResultType> 
 | 
			
		||||
void matrix_sqrt_triangular(const MatrixType &arg, ResultType &result)
 | 
			
		||||
{
 | 
			
		||||
  using std::sqrt;
 | 
			
		||||
      typedef typename MatrixType::Scalar Scalar;
 | 
			
		||||
 | 
			
		||||
  eigen_assert(arg.rows() == arg.cols());
 | 
			
		||||
 | 
			
		||||
  // Compute square root of arg and store it in upper triangular part of result
 | 
			
		||||
  // This uses that the square root of triangular matrices can be computed directly.
 | 
			
		||||
  result.resize(arg.rows(), arg.cols());
 | 
			
		||||
  for (Index i = 0; i < arg.rows(); i++) {
 | 
			
		||||
    result.coeffRef(i,i) = sqrt(arg.coeff(i,i));
 | 
			
		||||
  }
 | 
			
		||||
  for (Index j = 1; j < arg.cols(); j++) {
 | 
			
		||||
    for (Index i = j-1; i >= 0; i--) {
 | 
			
		||||
      // if i = j-1, then segment has length 0 so tmp = 0
 | 
			
		||||
      Scalar tmp = (result.row(i).segment(i+1,j-i-1) * result.col(j).segment(i+1,j-i-1)).value();
 | 
			
		||||
      // denominator may be zero if original matrix is singular
 | 
			
		||||
      result.coeffRef(i,j) = (arg.coeff(i,j) - tmp) / (result.coeff(i,i) + result.coeff(j,j));
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
namespace internal {
 | 
			
		||||
 | 
			
		||||
/** \ingroup MatrixFunctions_Module
 | 
			
		||||
  * \brief Helper struct for computing matrix square roots of general matrices.
 | 
			
		||||
  * \tparam  MatrixType  type of the argument of the matrix square root,
 | 
			
		||||
  *                      expected to be an instantiation of the Matrix class template.
 | 
			
		||||
  *
 | 
			
		||||
  * \sa MatrixSquareRootTriangular, MatrixSquareRootQuasiTriangular, MatrixBase::sqrt()
 | 
			
		||||
  */
 | 
			
		||||
template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
 | 
			
		||||
struct matrix_sqrt_compute
 | 
			
		||||
{
 | 
			
		||||
  /** \brief Compute the matrix square root
 | 
			
		||||
    *
 | 
			
		||||
    * \param[in]  arg     matrix whose square root is to be computed.
 | 
			
		||||
    * \param[out] result  square root of \p arg.
 | 
			
		||||
    *
 | 
			
		||||
    * See MatrixBase::sqrt() for details on how this computation is implemented.
 | 
			
		||||
    */
 | 
			
		||||
  template <typename ResultType> static void run(const MatrixType &arg, ResultType &result);    
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// ********** Partial specialization for real matrices **********
 | 
			
		||||
 | 
			
		||||
template <typename MatrixType>
 | 
			
		||||
struct matrix_sqrt_compute<MatrixType, 0>
 | 
			
		||||
{
 | 
			
		||||
  template <typename ResultType>
 | 
			
		||||
  static void run(const MatrixType &arg, ResultType &result)
 | 
			
		||||
  {
 | 
			
		||||
    eigen_assert(arg.rows() == arg.cols());
 | 
			
		||||
 | 
			
		||||
    // Compute Schur decomposition of arg
 | 
			
		||||
    const RealSchur<MatrixType> schurOfA(arg);  
 | 
			
		||||
    const MatrixType& T = schurOfA.matrixT();
 | 
			
		||||
    const MatrixType& U = schurOfA.matrixU();
 | 
			
		||||
    
 | 
			
		||||
    // Compute square root of T
 | 
			
		||||
    MatrixType sqrtT = MatrixType::Zero(arg.rows(), arg.cols());
 | 
			
		||||
    matrix_sqrt_quasi_triangular(T, sqrtT);
 | 
			
		||||
    
 | 
			
		||||
    // Compute square root of arg
 | 
			
		||||
    result = U * sqrtT * U.adjoint();
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// ********** Partial specialization for complex matrices **********
 | 
			
		||||
 | 
			
		||||
template <typename MatrixType>
 | 
			
		||||
struct matrix_sqrt_compute<MatrixType, 1>
 | 
			
		||||
{
 | 
			
		||||
  template <typename ResultType>
 | 
			
		||||
  static void run(const MatrixType &arg, ResultType &result)
 | 
			
		||||
  {
 | 
			
		||||
    eigen_assert(arg.rows() == arg.cols());
 | 
			
		||||
 | 
			
		||||
    // Compute Schur decomposition of arg
 | 
			
		||||
    const ComplexSchur<MatrixType> schurOfA(arg);  
 | 
			
		||||
    const MatrixType& T = schurOfA.matrixT();
 | 
			
		||||
    const MatrixType& U = schurOfA.matrixU();
 | 
			
		||||
    
 | 
			
		||||
    // Compute square root of T
 | 
			
		||||
    MatrixType sqrtT;
 | 
			
		||||
    matrix_sqrt_triangular(T, sqrtT);
 | 
			
		||||
    
 | 
			
		||||
    // Compute square root of arg
 | 
			
		||||
    result = U * (sqrtT.template triangularView<Upper>() * U.adjoint());
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
} // end namespace internal
 | 
			
		||||
 | 
			
		||||
/** \ingroup MatrixFunctions_Module
 | 
			
		||||
  *
 | 
			
		||||
  * \brief Proxy for the matrix square root of some matrix (expression).
 | 
			
		||||
  *
 | 
			
		||||
  * \tparam Derived  Type of the argument to the matrix square root.
 | 
			
		||||
  *
 | 
			
		||||
  * This class holds the argument to the matrix square root until it
 | 
			
		||||
  * is assigned or evaluated for some other reason (so the argument
 | 
			
		||||
  * should not be changed in the meantime). It is the return type of
 | 
			
		||||
  * MatrixBase::sqrt() and most of the time this is the only way it is
 | 
			
		||||
  * used.
 | 
			
		||||
  */
 | 
			
		||||
template<typename Derived> class MatrixSquareRootReturnValue
 | 
			
		||||
: public ReturnByValue<MatrixSquareRootReturnValue<Derived> >
 | 
			
		||||
{
 | 
			
		||||
  protected:
 | 
			
		||||
    typedef typename internal::ref_selector<Derived>::type DerivedNested;
 | 
			
		||||
 | 
			
		||||
  public:
 | 
			
		||||
    /** \brief Constructor.
 | 
			
		||||
      *
 | 
			
		||||
      * \param[in]  src  %Matrix (expression) forming the argument of the
 | 
			
		||||
      * matrix square root.
 | 
			
		||||
      */
 | 
			
		||||
    explicit MatrixSquareRootReturnValue(const Derived& src) : m_src(src) { }
 | 
			
		||||
 | 
			
		||||
    /** \brief Compute the matrix square root.
 | 
			
		||||
      *
 | 
			
		||||
      * \param[out]  result  the matrix square root of \p src in the
 | 
			
		||||
      * constructor.
 | 
			
		||||
      */
 | 
			
		||||
    template <typename ResultType>
 | 
			
		||||
    inline void evalTo(ResultType& result) const
 | 
			
		||||
    {
 | 
			
		||||
      typedef typename internal::nested_eval<Derived, 10>::type DerivedEvalType;
 | 
			
		||||
      typedef typename internal::remove_all<DerivedEvalType>::type DerivedEvalTypeClean;
 | 
			
		||||
      DerivedEvalType tmp(m_src);
 | 
			
		||||
      internal::matrix_sqrt_compute<DerivedEvalTypeClean>::run(tmp, result);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    Index rows() const { return m_src.rows(); }
 | 
			
		||||
    Index cols() const { return m_src.cols(); }
 | 
			
		||||
 | 
			
		||||
  protected:
 | 
			
		||||
    const DerivedNested m_src;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
namespace internal {
 | 
			
		||||
template<typename Derived>
 | 
			
		||||
struct traits<MatrixSquareRootReturnValue<Derived> >
 | 
			
		||||
{
 | 
			
		||||
  typedef typename Derived::PlainObject ReturnType;
 | 
			
		||||
};
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename Derived>
 | 
			
		||||
const MatrixSquareRootReturnValue<Derived> MatrixBase<Derived>::sqrt() const
 | 
			
		||||
{
 | 
			
		||||
  eigen_assert(rows() == cols());
 | 
			
		||||
  return MatrixSquareRootReturnValue<Derived>(derived());
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
} // end namespace Eigen
 | 
			
		||||
 | 
			
		||||
#endif // EIGEN_MATRIX_FUNCTION
 | 
			
		||||
							
								
								
									
										117
									
								
								external/include/eigen3/unsupported/Eigen/src/MatrixFunctions/StemFunction.h
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										117
									
								
								external/include/eigen3/unsupported/Eigen/src/MatrixFunctions/StemFunction.h
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@@ -0,0 +1,117 @@
 | 
			
		||||
// This file is part of Eigen, a lightweight C++ template library
 | 
			
		||||
// for linear algebra.
 | 
			
		||||
//
 | 
			
		||||
// Copyright (C) 2010, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
 | 
			
		||||
//
 | 
			
		||||
// This Source Code Form is subject to the terms of the Mozilla
 | 
			
		||||
// Public License v. 2.0. If a copy of the MPL was not distributed
 | 
			
		||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | 
			
		||||
 | 
			
		||||
#ifndef EIGEN_STEM_FUNCTION
 | 
			
		||||
#define EIGEN_STEM_FUNCTION
 | 
			
		||||
 | 
			
		||||
namespace Eigen { 
 | 
			
		||||
 | 
			
		||||
namespace internal {
 | 
			
		||||
 | 
			
		||||
/** \brief The exponential function (and its derivatives). */
 | 
			
		||||
template <typename Scalar>
 | 
			
		||||
Scalar stem_function_exp(Scalar x, int)
 | 
			
		||||
{
 | 
			
		||||
  using std::exp;
 | 
			
		||||
  return exp(x);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** \brief Cosine (and its derivatives). */
 | 
			
		||||
template <typename Scalar>
 | 
			
		||||
Scalar stem_function_cos(Scalar x, int n)
 | 
			
		||||
{
 | 
			
		||||
  using std::cos;
 | 
			
		||||
  using std::sin;
 | 
			
		||||
  Scalar res;
 | 
			
		||||
 | 
			
		||||
  switch (n % 4) {
 | 
			
		||||
  case 0: 
 | 
			
		||||
    res = std::cos(x);
 | 
			
		||||
    break;
 | 
			
		||||
  case 1:
 | 
			
		||||
    res = -std::sin(x);
 | 
			
		||||
    break;
 | 
			
		||||
  case 2:
 | 
			
		||||
    res = -std::cos(x);
 | 
			
		||||
    break;
 | 
			
		||||
  case 3:
 | 
			
		||||
    res = std::sin(x);
 | 
			
		||||
    break;
 | 
			
		||||
  }
 | 
			
		||||
  return res;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** \brief Sine (and its derivatives). */
 | 
			
		||||
template <typename Scalar>
 | 
			
		||||
Scalar stem_function_sin(Scalar x, int n)
 | 
			
		||||
{
 | 
			
		||||
  using std::cos;
 | 
			
		||||
  using std::sin;
 | 
			
		||||
  Scalar res;
 | 
			
		||||
 | 
			
		||||
  switch (n % 4) {
 | 
			
		||||
  case 0:
 | 
			
		||||
    res = std::sin(x);
 | 
			
		||||
    break;
 | 
			
		||||
  case 1:
 | 
			
		||||
    res = std::cos(x);
 | 
			
		||||
    break;
 | 
			
		||||
  case 2:
 | 
			
		||||
    res = -std::sin(x);
 | 
			
		||||
    break;
 | 
			
		||||
  case 3:
 | 
			
		||||
    res = -std::cos(x);
 | 
			
		||||
    break;
 | 
			
		||||
  }
 | 
			
		||||
  return res;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** \brief Hyperbolic cosine (and its derivatives). */
 | 
			
		||||
template <typename Scalar>
 | 
			
		||||
Scalar stem_function_cosh(Scalar x, int n)
 | 
			
		||||
{
 | 
			
		||||
  using std::cosh;
 | 
			
		||||
  using std::sinh;
 | 
			
		||||
  Scalar res;
 | 
			
		||||
  
 | 
			
		||||
  switch (n % 2) {
 | 
			
		||||
  case 0:
 | 
			
		||||
    res = std::cosh(x);
 | 
			
		||||
    break;
 | 
			
		||||
  case 1:
 | 
			
		||||
    res = std::sinh(x);
 | 
			
		||||
    break;
 | 
			
		||||
  }
 | 
			
		||||
  return res;
 | 
			
		||||
}
 | 
			
		||||
	
 | 
			
		||||
/** \brief Hyperbolic sine (and its derivatives). */
 | 
			
		||||
template <typename Scalar>
 | 
			
		||||
Scalar stem_function_sinh(Scalar x, int n)
 | 
			
		||||
{
 | 
			
		||||
  using std::cosh;
 | 
			
		||||
  using std::sinh;
 | 
			
		||||
  Scalar res;
 | 
			
		||||
  
 | 
			
		||||
  switch (n % 2) {
 | 
			
		||||
  case 0:
 | 
			
		||||
    res = std::sinh(x);
 | 
			
		||||
    break;
 | 
			
		||||
  case 1:
 | 
			
		||||
    res = std::cosh(x);
 | 
			
		||||
    break;
 | 
			
		||||
  }
 | 
			
		||||
  return res;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
} // end namespace internal
 | 
			
		||||
 | 
			
		||||
} // end namespace Eigen
 | 
			
		||||
 | 
			
		||||
#endif // EIGEN_STEM_FUNCTION
 | 
			
		||||
		Reference in New Issue
	
	Block a user