add Eigen as a dependency

This commit is contained in:
Sven Czarnian
2021-12-16 15:59:56 +01:00
parent a08ac9b244
commit 27b422d806
479 changed files with 167893 additions and 0 deletions

View File

@@ -0,0 +1,442 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009, 2010, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
// Copyright (C) 2011, 2013 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MATRIX_EXPONENTIAL
#define EIGEN_MATRIX_EXPONENTIAL
#include "StemFunction.h"
namespace Eigen {
namespace internal {
/** \brief Scaling operator.
*
* This struct is used by CwiseUnaryOp to scale a matrix by \f$ 2^{-s} \f$.
*/
template <typename RealScalar>
struct MatrixExponentialScalingOp
{
/** \brief Constructor.
*
* \param[in] squarings The integer \f$ s \f$ in this document.
*/
MatrixExponentialScalingOp(int squarings) : m_squarings(squarings) { }
/** \brief Scale a matrix coefficient.
*
* \param[in,out] x The scalar to be scaled, becoming \f$ 2^{-s} x \f$.
*/
inline const RealScalar operator() (const RealScalar& x) const
{
using std::ldexp;
return ldexp(x, -m_squarings);
}
typedef std::complex<RealScalar> ComplexScalar;
/** \brief Scale a matrix coefficient.
*
* \param[in,out] x The scalar to be scaled, becoming \f$ 2^{-s} x \f$.
*/
inline const ComplexScalar operator() (const ComplexScalar& x) const
{
using std::ldexp;
return ComplexScalar(ldexp(x.real(), -m_squarings), ldexp(x.imag(), -m_squarings));
}
private:
int m_squarings;
};
/** \brief Compute the (3,3)-Pad&eacute; approximant to the exponential.
*
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
*/
template <typename MatA, typename MatU, typename MatV>
void matrix_exp_pade3(const MatA& A, MatU& U, MatV& V)
{
typedef typename MatA::PlainObject MatrixType;
typedef typename NumTraits<typename traits<MatA>::Scalar>::Real RealScalar;
const RealScalar b[] = {120.L, 60.L, 12.L, 1.L};
const MatrixType A2 = A * A;
const MatrixType tmp = b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
U.noalias() = A * tmp;
V = b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
}
/** \brief Compute the (5,5)-Pad&eacute; approximant to the exponential.
*
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
*/
template <typename MatA, typename MatU, typename MatV>
void matrix_exp_pade5(const MatA& A, MatU& U, MatV& V)
{
typedef typename MatA::PlainObject MatrixType;
typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
const RealScalar b[] = {30240.L, 15120.L, 3360.L, 420.L, 30.L, 1.L};
const MatrixType A2 = A * A;
const MatrixType A4 = A2 * A2;
const MatrixType tmp = b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
U.noalias() = A * tmp;
V = b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
}
/** \brief Compute the (7,7)-Pad&eacute; approximant to the exponential.
*
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
*/
template <typename MatA, typename MatU, typename MatV>
void matrix_exp_pade7(const MatA& A, MatU& U, MatV& V)
{
typedef typename MatA::PlainObject MatrixType;
typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
const RealScalar b[] = {17297280.L, 8648640.L, 1995840.L, 277200.L, 25200.L, 1512.L, 56.L, 1.L};
const MatrixType A2 = A * A;
const MatrixType A4 = A2 * A2;
const MatrixType A6 = A4 * A2;
const MatrixType tmp = b[7] * A6 + b[5] * A4 + b[3] * A2
+ b[1] * MatrixType::Identity(A.rows(), A.cols());
U.noalias() = A * tmp;
V = b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
}
/** \brief Compute the (9,9)-Pad&eacute; approximant to the exponential.
*
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
*/
template <typename MatA, typename MatU, typename MatV>
void matrix_exp_pade9(const MatA& A, MatU& U, MatV& V)
{
typedef typename MatA::PlainObject MatrixType;
typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
const RealScalar b[] = {17643225600.L, 8821612800.L, 2075673600.L, 302702400.L, 30270240.L,
2162160.L, 110880.L, 3960.L, 90.L, 1.L};
const MatrixType A2 = A * A;
const MatrixType A4 = A2 * A2;
const MatrixType A6 = A4 * A2;
const MatrixType A8 = A6 * A2;
const MatrixType tmp = b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2
+ b[1] * MatrixType::Identity(A.rows(), A.cols());
U.noalias() = A * tmp;
V = b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
}
/** \brief Compute the (13,13)-Pad&eacute; approximant to the exponential.
*
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
*/
template <typename MatA, typename MatU, typename MatV>
void matrix_exp_pade13(const MatA& A, MatU& U, MatV& V)
{
typedef typename MatA::PlainObject MatrixType;
typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
const RealScalar b[] = {64764752532480000.L, 32382376266240000.L, 7771770303897600.L,
1187353796428800.L, 129060195264000.L, 10559470521600.L, 670442572800.L,
33522128640.L, 1323241920.L, 40840800.L, 960960.L, 16380.L, 182.L, 1.L};
const MatrixType A2 = A * A;
const MatrixType A4 = A2 * A2;
const MatrixType A6 = A4 * A2;
V = b[13] * A6 + b[11] * A4 + b[9] * A2; // used for temporary storage
MatrixType tmp = A6 * V;
tmp += b[7] * A6 + b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
U.noalias() = A * tmp;
tmp = b[12] * A6 + b[10] * A4 + b[8] * A2;
V.noalias() = A6 * tmp;
V += b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
}
/** \brief Compute the (17,17)-Pad&eacute; approximant to the exponential.
*
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
*
* This function activates only if your long double is double-double or quadruple.
*/
#if LDBL_MANT_DIG > 64
template <typename MatA, typename MatU, typename MatV>
void matrix_exp_pade17(const MatA& A, MatU& U, MatV& V)
{
typedef typename MatA::PlainObject MatrixType;
typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
const RealScalar b[] = {830034394580628357120000.L, 415017197290314178560000.L,
100610229646136770560000.L, 15720348382208870400000.L,
1774878043152614400000.L, 153822763739893248000.L, 10608466464820224000.L,
595373117923584000.L, 27563570274240000.L, 1060137318240000.L,
33924394183680.L, 899510451840.L, 19554575040.L, 341863200.L, 4651200.L,
46512.L, 306.L, 1.L};
const MatrixType A2 = A * A;
const MatrixType A4 = A2 * A2;
const MatrixType A6 = A4 * A2;
const MatrixType A8 = A4 * A4;
V = b[17] * A8 + b[15] * A6 + b[13] * A4 + b[11] * A2; // used for temporary storage
MatrixType tmp = A8 * V;
tmp += b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2
+ b[1] * MatrixType::Identity(A.rows(), A.cols());
U.noalias() = A * tmp;
tmp = b[16] * A8 + b[14] * A6 + b[12] * A4 + b[10] * A2;
V.noalias() = tmp * A8;
V += b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2
+ b[0] * MatrixType::Identity(A.rows(), A.cols());
}
#endif
template <typename MatrixType, typename RealScalar = typename NumTraits<typename traits<MatrixType>::Scalar>::Real>
struct matrix_exp_computeUV
{
/** \brief Compute Pad&eacute; approximant to the exponential.
*
* Computes \c U, \c V and \c squarings such that \f$ (V+U)(V-U)^{-1} \f$ is a Pad&eacute;
* approximant of \f$ \exp(2^{-\mbox{squarings}}M) \f$ around \f$ M = 0 \f$, where \f$ M \f$
* denotes the matrix \c arg. The degree of the Pad&eacute; approximant and the value of squarings
* are chosen such that the approximation error is no more than the round-off error.
*/
static void run(const MatrixType& arg, MatrixType& U, MatrixType& V, int& squarings);
};
template <typename MatrixType>
struct matrix_exp_computeUV<MatrixType, float>
{
template <typename ArgType>
static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings)
{
using std::frexp;
using std::pow;
const float l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
squarings = 0;
if (l1norm < 4.258730016922831e-001f) {
matrix_exp_pade3(arg, U, V);
} else if (l1norm < 1.880152677804762e+000f) {
matrix_exp_pade5(arg, U, V);
} else {
const float maxnorm = 3.925724783138660f;
frexp(l1norm / maxnorm, &squarings);
if (squarings < 0) squarings = 0;
MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<float>(squarings));
matrix_exp_pade7(A, U, V);
}
}
};
template <typename MatrixType>
struct matrix_exp_computeUV<MatrixType, double>
{
typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
template <typename ArgType>
static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings)
{
using std::frexp;
using std::pow;
const RealScalar l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
squarings = 0;
if (l1norm < 1.495585217958292e-002) {
matrix_exp_pade3(arg, U, V);
} else if (l1norm < 2.539398330063230e-001) {
matrix_exp_pade5(arg, U, V);
} else if (l1norm < 9.504178996162932e-001) {
matrix_exp_pade7(arg, U, V);
} else if (l1norm < 2.097847961257068e+000) {
matrix_exp_pade9(arg, U, V);
} else {
const RealScalar maxnorm = 5.371920351148152;
frexp(l1norm / maxnorm, &squarings);
if (squarings < 0) squarings = 0;
MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<RealScalar>(squarings));
matrix_exp_pade13(A, U, V);
}
}
};
template <typename MatrixType>
struct matrix_exp_computeUV<MatrixType, long double>
{
template <typename ArgType>
static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings)
{
#if LDBL_MANT_DIG == 53 // double precision
matrix_exp_computeUV<MatrixType, double>::run(arg, U, V, squarings);
#else
using std::frexp;
using std::pow;
const long double l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
squarings = 0;
#if LDBL_MANT_DIG <= 64 // extended precision
if (l1norm < 4.1968497232266989671e-003L) {
matrix_exp_pade3(arg, U, V);
} else if (l1norm < 1.1848116734693823091e-001L) {
matrix_exp_pade5(arg, U, V);
} else if (l1norm < 5.5170388480686700274e-001L) {
matrix_exp_pade7(arg, U, V);
} else if (l1norm < 1.3759868875587845383e+000L) {
matrix_exp_pade9(arg, U, V);
} else {
const long double maxnorm = 4.0246098906697353063L;
frexp(l1norm / maxnorm, &squarings);
if (squarings < 0) squarings = 0;
MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings));
matrix_exp_pade13(A, U, V);
}
#elif LDBL_MANT_DIG <= 106 // double-double
if (l1norm < 3.2787892205607026992947488108213e-005L) {
matrix_exp_pade3(arg, U, V);
} else if (l1norm < 6.4467025060072760084130906076332e-003L) {
matrix_exp_pade5(arg, U, V);
} else if (l1norm < 6.8988028496595374751374122881143e-002L) {
matrix_exp_pade7(arg, U, V);
} else if (l1norm < 2.7339737518502231741495857201670e-001L) {
matrix_exp_pade9(arg, U, V);
} else if (l1norm < 1.3203382096514474905666448850278e+000L) {
matrix_exp_pade13(arg, U, V);
} else {
const long double maxnorm = 3.2579440895405400856599663723517L;
frexp(l1norm / maxnorm, &squarings);
if (squarings < 0) squarings = 0;
MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings));
matrix_exp_pade17(A, U, V);
}
#elif LDBL_MANT_DIG <= 112 // quadruple precison
if (l1norm < 1.639394610288918690547467954466970e-005L) {
matrix_exp_pade3(arg, U, V);
} else if (l1norm < 4.253237712165275566025884344433009e-003L) {
matrix_exp_pade5(arg, U, V);
} else if (l1norm < 5.125804063165764409885122032933142e-002L) {
matrix_exp_pade7(arg, U, V);
} else if (l1norm < 2.170000765161155195453205651889853e-001L) {
matrix_exp_pade9(arg, U, V);
} else if (l1norm < 1.125358383453143065081397882891878e+000L) {
matrix_exp_pade13(arg, U, V);
} else {
const long double maxnorm = 2.884233277829519311757165057717815L;
frexp(l1norm / maxnorm, &squarings);
if (squarings < 0) squarings = 0;
MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings));
matrix_exp_pade17(A, U, V);
}
#else
// this case should be handled in compute()
eigen_assert(false && "Bug in MatrixExponential");
#endif
#endif // LDBL_MANT_DIG
}
};
template<typename T> struct is_exp_known_type : false_type {};
template<> struct is_exp_known_type<float> : true_type {};
template<> struct is_exp_known_type<double> : true_type {};
#if LDBL_MANT_DIG <= 112
template<> struct is_exp_known_type<long double> : true_type {};
#endif
template <typename ArgType, typename ResultType>
void matrix_exp_compute(const ArgType& arg, ResultType &result, true_type) // natively supported scalar type
{
typedef typename ArgType::PlainObject MatrixType;
MatrixType U, V;
int squarings;
matrix_exp_computeUV<MatrixType>::run(arg, U, V, squarings); // Pade approximant is (U+V) / (-U+V)
MatrixType numer = U + V;
MatrixType denom = -U + V;
result = denom.partialPivLu().solve(numer);
for (int i=0; i<squarings; i++)
result *= result; // undo scaling by repeated squaring
}
/* Computes the matrix exponential
*
* \param arg argument of matrix exponential (should be plain object)
* \param result variable in which result will be stored
*/
template <typename ArgType, typename ResultType>
void matrix_exp_compute(const ArgType& arg, ResultType &result, false_type) // default
{
typedef typename ArgType::PlainObject MatrixType;
typedef typename traits<MatrixType>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef typename std::complex<RealScalar> ComplexScalar;
result = arg.matrixFunction(internal::stem_function_exp<ComplexScalar>);
}
} // end namespace Eigen::internal
/** \ingroup MatrixFunctions_Module
*
* \brief Proxy for the matrix exponential of some matrix (expression).
*
* \tparam Derived Type of the argument to the matrix exponential.
*
* This class holds the argument to the matrix exponential until it is assigned or evaluated for
* some other reason (so the argument should not be changed in the meantime). It is the return type
* of MatrixBase::exp() and most of the time this is the only way it is used.
*/
template<typename Derived> struct MatrixExponentialReturnValue
: public ReturnByValue<MatrixExponentialReturnValue<Derived> >
{
typedef typename Derived::Index Index;
public:
/** \brief Constructor.
*
* \param src %Matrix (expression) forming the argument of the matrix exponential.
*/
MatrixExponentialReturnValue(const Derived& src) : m_src(src) { }
/** \brief Compute the matrix exponential.
*
* \param result the matrix exponential of \p src in the constructor.
*/
template <typename ResultType>
inline void evalTo(ResultType& result) const
{
const typename internal::nested_eval<Derived, 10>::type tmp(m_src);
internal::matrix_exp_compute(tmp, result, internal::is_exp_known_type<typename Derived::Scalar>());
}
Index rows() const { return m_src.rows(); }
Index cols() const { return m_src.cols(); }
protected:
const typename internal::ref_selector<Derived>::type m_src;
};
namespace internal {
template<typename Derived>
struct traits<MatrixExponentialReturnValue<Derived> >
{
typedef typename Derived::PlainObject ReturnType;
};
}
template <typename Derived>
const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const
{
eigen_assert(rows() == cols());
return MatrixExponentialReturnValue<Derived>(derived());
}
} // end namespace Eigen
#endif // EIGEN_MATRIX_EXPONENTIAL

View File

@@ -0,0 +1,580 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MATRIX_FUNCTION_H
#define EIGEN_MATRIX_FUNCTION_H
#include "StemFunction.h"
namespace Eigen {
namespace internal {
/** \brief Maximum distance allowed between eigenvalues to be considered "close". */
static const float matrix_function_separation = 0.1f;
/** \ingroup MatrixFunctions_Module
* \class MatrixFunctionAtomic
* \brief Helper class for computing matrix functions of atomic matrices.
*
* Here, an atomic matrix is a triangular matrix whose diagonal entries are close to each other.
*/
template <typename MatrixType>
class MatrixFunctionAtomic
{
public:
typedef typename MatrixType::Scalar Scalar;
typedef typename stem_function<Scalar>::type StemFunction;
/** \brief Constructor
* \param[in] f matrix function to compute.
*/
MatrixFunctionAtomic(StemFunction f) : m_f(f) { }
/** \brief Compute matrix function of atomic matrix
* \param[in] A argument of matrix function, should be upper triangular and atomic
* \returns f(A), the matrix function evaluated at the given matrix
*/
MatrixType compute(const MatrixType& A);
private:
StemFunction* m_f;
};
template <typename MatrixType>
typename NumTraits<typename MatrixType::Scalar>::Real matrix_function_compute_mu(const MatrixType& A)
{
typedef typename plain_col_type<MatrixType>::type VectorType;
typename MatrixType::Index rows = A.rows();
const MatrixType N = MatrixType::Identity(rows, rows) - A;
VectorType e = VectorType::Ones(rows);
N.template triangularView<Upper>().solveInPlace(e);
return e.cwiseAbs().maxCoeff();
}
template <typename MatrixType>
MatrixType MatrixFunctionAtomic<MatrixType>::compute(const MatrixType& A)
{
// TODO: Use that A is upper triangular
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef typename MatrixType::Index Index;
Index rows = A.rows();
Scalar avgEival = A.trace() / Scalar(RealScalar(rows));
MatrixType Ashifted = A - avgEival * MatrixType::Identity(rows, rows);
RealScalar mu = matrix_function_compute_mu(Ashifted);
MatrixType F = m_f(avgEival, 0) * MatrixType::Identity(rows, rows);
MatrixType P = Ashifted;
MatrixType Fincr;
for (Index s = 1; s < 1.1 * rows + 10; s++) { // upper limit is fairly arbitrary
Fincr = m_f(avgEival, static_cast<int>(s)) * P;
F += Fincr;
P = Scalar(RealScalar(1.0/(s + 1))) * P * Ashifted;
// test whether Taylor series converged
const RealScalar F_norm = F.cwiseAbs().rowwise().sum().maxCoeff();
const RealScalar Fincr_norm = Fincr.cwiseAbs().rowwise().sum().maxCoeff();
if (Fincr_norm < NumTraits<Scalar>::epsilon() * F_norm) {
RealScalar delta = 0;
RealScalar rfactorial = 1;
for (Index r = 0; r < rows; r++) {
RealScalar mx = 0;
for (Index i = 0; i < rows; i++)
mx = (std::max)(mx, std::abs(m_f(Ashifted(i, i) + avgEival, static_cast<int>(s+r))));
if (r != 0)
rfactorial *= RealScalar(r);
delta = (std::max)(delta, mx / rfactorial);
}
const RealScalar P_norm = P.cwiseAbs().rowwise().sum().maxCoeff();
if (mu * delta * P_norm < NumTraits<Scalar>::epsilon() * F_norm) // series converged
break;
}
}
return F;
}
/** \brief Find cluster in \p clusters containing some value
* \param[in] key Value to find
* \returns Iterator to cluster containing \p key, or \c clusters.end() if no cluster in \p m_clusters
* contains \p key.
*/
template <typename Index, typename ListOfClusters>
typename ListOfClusters::iterator matrix_function_find_cluster(Index key, ListOfClusters& clusters)
{
typename std::list<Index>::iterator j;
for (typename ListOfClusters::iterator i = clusters.begin(); i != clusters.end(); ++i) {
j = std::find(i->begin(), i->end(), key);
if (j != i->end())
return i;
}
return clusters.end();
}
/** \brief Partition eigenvalues in clusters of ei'vals close to each other
*
* \param[in] eivals Eigenvalues
* \param[out] clusters Resulting partition of eigenvalues
*
* The partition satisfies the following two properties:
* # Any eigenvalue in a certain cluster is at most matrix_function_separation() away from another eigenvalue
* in the same cluster.
* # The distance between two eigenvalues in different clusters is more than matrix_function_separation().
* The implementation follows Algorithm 4.1 in the paper of Davies and Higham.
*/
template <typename EivalsType, typename Cluster>
void matrix_function_partition_eigenvalues(const EivalsType& eivals, std::list<Cluster>& clusters)
{
typedef typename EivalsType::Index Index;
typedef typename EivalsType::RealScalar RealScalar;
for (Index i=0; i<eivals.rows(); ++i) {
// Find cluster containing i-th ei'val, adding a new cluster if necessary
typename std::list<Cluster>::iterator qi = matrix_function_find_cluster(i, clusters);
if (qi == clusters.end()) {
Cluster l;
l.push_back(i);
clusters.push_back(l);
qi = clusters.end();
--qi;
}
// Look for other element to add to the set
for (Index j=i+1; j<eivals.rows(); ++j) {
if (abs(eivals(j) - eivals(i)) <= RealScalar(matrix_function_separation)
&& std::find(qi->begin(), qi->end(), j) == qi->end()) {
typename std::list<Cluster>::iterator qj = matrix_function_find_cluster(j, clusters);
if (qj == clusters.end()) {
qi->push_back(j);
} else {
qi->insert(qi->end(), qj->begin(), qj->end());
clusters.erase(qj);
}
}
}
}
}
/** \brief Compute size of each cluster given a partitioning */
template <typename ListOfClusters, typename Index>
void matrix_function_compute_cluster_size(const ListOfClusters& clusters, Matrix<Index, Dynamic, 1>& clusterSize)
{
const Index numClusters = static_cast<Index>(clusters.size());
clusterSize.setZero(numClusters);
Index clusterIndex = 0;
for (typename ListOfClusters::const_iterator cluster = clusters.begin(); cluster != clusters.end(); ++cluster) {
clusterSize[clusterIndex] = cluster->size();
++clusterIndex;
}
}
/** \brief Compute start of each block using clusterSize */
template <typename VectorType>
void matrix_function_compute_block_start(const VectorType& clusterSize, VectorType& blockStart)
{
blockStart.resize(clusterSize.rows());
blockStart(0) = 0;
for (typename VectorType::Index i = 1; i < clusterSize.rows(); i++) {
blockStart(i) = blockStart(i-1) + clusterSize(i-1);
}
}
/** \brief Compute mapping of eigenvalue indices to cluster indices */
template <typename EivalsType, typename ListOfClusters, typename VectorType>
void matrix_function_compute_map(const EivalsType& eivals, const ListOfClusters& clusters, VectorType& eivalToCluster)
{
typedef typename EivalsType::Index Index;
eivalToCluster.resize(eivals.rows());
Index clusterIndex = 0;
for (typename ListOfClusters::const_iterator cluster = clusters.begin(); cluster != clusters.end(); ++cluster) {
for (Index i = 0; i < eivals.rows(); ++i) {
if (std::find(cluster->begin(), cluster->end(), i) != cluster->end()) {
eivalToCluster[i] = clusterIndex;
}
}
++clusterIndex;
}
}
/** \brief Compute permutation which groups ei'vals in same cluster together */
template <typename DynVectorType, typename VectorType>
void matrix_function_compute_permutation(const DynVectorType& blockStart, const DynVectorType& eivalToCluster, VectorType& permutation)
{
typedef typename VectorType::Index Index;
DynVectorType indexNextEntry = blockStart;
permutation.resize(eivalToCluster.rows());
for (Index i = 0; i < eivalToCluster.rows(); i++) {
Index cluster = eivalToCluster[i];
permutation[i] = indexNextEntry[cluster];
++indexNextEntry[cluster];
}
}
/** \brief Permute Schur decomposition in U and T according to permutation */
template <typename VectorType, typename MatrixType>
void matrix_function_permute_schur(VectorType& permutation, MatrixType& U, MatrixType& T)
{
typedef typename VectorType::Index Index;
for (Index i = 0; i < permutation.rows() - 1; i++) {
Index j;
for (j = i; j < permutation.rows(); j++) {
if (permutation(j) == i) break;
}
eigen_assert(permutation(j) == i);
for (Index k = j-1; k >= i; k--) {
JacobiRotation<typename MatrixType::Scalar> rotation;
rotation.makeGivens(T(k, k+1), T(k+1, k+1) - T(k, k));
T.applyOnTheLeft(k, k+1, rotation.adjoint());
T.applyOnTheRight(k, k+1, rotation);
U.applyOnTheRight(k, k+1, rotation);
std::swap(permutation.coeffRef(k), permutation.coeffRef(k+1));
}
}
}
/** \brief Compute block diagonal part of matrix function.
*
* This routine computes the matrix function applied to the block diagonal part of \p T (which should be
* upper triangular), with the blocking given by \p blockStart and \p clusterSize. The matrix function of
* each diagonal block is computed by \p atomic. The off-diagonal parts of \p fT are set to zero.
*/
template <typename MatrixType, typename AtomicType, typename VectorType>
void matrix_function_compute_block_atomic(const MatrixType& T, AtomicType& atomic, const VectorType& blockStart, const VectorType& clusterSize, MatrixType& fT)
{
fT.setZero(T.rows(), T.cols());
for (typename VectorType::Index i = 0; i < clusterSize.rows(); ++i) {
fT.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i))
= atomic.compute(T.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i)));
}
}
/** \brief Solve a triangular Sylvester equation AX + XB = C
*
* \param[in] A the matrix A; should be square and upper triangular
* \param[in] B the matrix B; should be square and upper triangular
* \param[in] C the matrix C; should have correct size.
*
* \returns the solution X.
*
* If A is m-by-m and B is n-by-n, then both C and X are m-by-n. The (i,j)-th component of the Sylvester
* equation is
* \f[
* \sum_{k=i}^m A_{ik} X_{kj} + \sum_{k=1}^j X_{ik} B_{kj} = C_{ij}.
* \f]
* This can be re-arranged to yield:
* \f[
* X_{ij} = \frac{1}{A_{ii} + B_{jj}} \Bigl( C_{ij}
* - \sum_{k=i+1}^m A_{ik} X_{kj} - \sum_{k=1}^{j-1} X_{ik} B_{kj} \Bigr).
* \f]
* It is assumed that A and B are such that the numerator is never zero (otherwise the Sylvester equation
* does not have a unique solution). In that case, these equations can be evaluated in the order
* \f$ i=m,\ldots,1 \f$ and \f$ j=1,\ldots,n \f$.
*/
template <typename MatrixType>
MatrixType matrix_function_solve_triangular_sylvester(const MatrixType& A, const MatrixType& B, const MatrixType& C)
{
eigen_assert(A.rows() == A.cols());
eigen_assert(A.isUpperTriangular());
eigen_assert(B.rows() == B.cols());
eigen_assert(B.isUpperTriangular());
eigen_assert(C.rows() == A.rows());
eigen_assert(C.cols() == B.rows());
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
Index m = A.rows();
Index n = B.rows();
MatrixType X(m, n);
for (Index i = m - 1; i >= 0; --i) {
for (Index j = 0; j < n; ++j) {
// Compute AX = \sum_{k=i+1}^m A_{ik} X_{kj}
Scalar AX;
if (i == m - 1) {
AX = 0;
} else {
Matrix<Scalar,1,1> AXmatrix = A.row(i).tail(m-1-i) * X.col(j).tail(m-1-i);
AX = AXmatrix(0,0);
}
// Compute XB = \sum_{k=1}^{j-1} X_{ik} B_{kj}
Scalar XB;
if (j == 0) {
XB = 0;
} else {
Matrix<Scalar,1,1> XBmatrix = X.row(i).head(j) * B.col(j).head(j);
XB = XBmatrix(0,0);
}
X(i,j) = (C(i,j) - AX - XB) / (A(i,i) + B(j,j));
}
}
return X;
}
/** \brief Compute part of matrix function above block diagonal.
*
* This routine completes the computation of \p fT, denoting a matrix function applied to the triangular
* matrix \p T. It assumes that the block diagonal part of \p fT has already been computed. The part below
* the diagonal is zero, because \p T is upper triangular.
*/
template <typename MatrixType, typename VectorType>
void matrix_function_compute_above_diagonal(const MatrixType& T, const VectorType& blockStart, const VectorType& clusterSize, MatrixType& fT)
{
typedef internal::traits<MatrixType> Traits;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
static const int Options = MatrixType::Options;
typedef Matrix<Scalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
for (Index k = 1; k < clusterSize.rows(); k++) {
for (Index i = 0; i < clusterSize.rows() - k; i++) {
// compute (i, i+k) block
DynMatrixType A = T.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i));
DynMatrixType B = -T.block(blockStart(i+k), blockStart(i+k), clusterSize(i+k), clusterSize(i+k));
DynMatrixType C = fT.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i))
* T.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k));
C -= T.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k))
* fT.block(blockStart(i+k), blockStart(i+k), clusterSize(i+k), clusterSize(i+k));
for (Index m = i + 1; m < i + k; m++) {
C += fT.block(blockStart(i), blockStart(m), clusterSize(i), clusterSize(m))
* T.block(blockStart(m), blockStart(i+k), clusterSize(m), clusterSize(i+k));
C -= T.block(blockStart(i), blockStart(m), clusterSize(i), clusterSize(m))
* fT.block(blockStart(m), blockStart(i+k), clusterSize(m), clusterSize(i+k));
}
fT.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k))
= matrix_function_solve_triangular_sylvester(A, B, C);
}
}
}
/** \ingroup MatrixFunctions_Module
* \brief Class for computing matrix functions.
* \tparam MatrixType type of the argument of the matrix function,
* expected to be an instantiation of the Matrix class template.
* \tparam AtomicType type for computing matrix function of atomic blocks.
* \tparam IsComplex used internally to select correct specialization.
*
* This class implements the Schur-Parlett algorithm for computing matrix functions. The spectrum of the
* matrix is divided in clustered of eigenvalues that lies close together. This class delegates the
* computation of the matrix function on every block corresponding to these clusters to an object of type
* \p AtomicType and uses these results to compute the matrix function of the whole matrix. The class
* \p AtomicType should have a \p compute() member function for computing the matrix function of a block.
*
* \sa class MatrixFunctionAtomic, class MatrixLogarithmAtomic
*/
template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
struct matrix_function_compute
{
/** \brief Compute the matrix function.
*
* \param[in] A argument of matrix function, should be a square matrix.
* \param[in] atomic class for computing matrix function of atomic blocks.
* \param[out] result the function \p f applied to \p A, as
* specified in the constructor.
*
* See MatrixBase::matrixFunction() for details on how this computation
* is implemented.
*/
template <typename AtomicType, typename ResultType>
static void run(const MatrixType& A, AtomicType& atomic, ResultType &result);
};
/** \internal \ingroup MatrixFunctions_Module
* \brief Partial specialization of MatrixFunction for real matrices
*
* This converts the real matrix to a complex matrix, compute the matrix function of that matrix, and then
* converts the result back to a real matrix.
*/
template <typename MatrixType>
struct matrix_function_compute<MatrixType, 0>
{
template <typename MatA, typename AtomicType, typename ResultType>
static void run(const MatA& A, AtomicType& atomic, ResultType &result)
{
typedef internal::traits<MatrixType> Traits;
typedef typename Traits::Scalar Scalar;
static const int Rows = Traits::RowsAtCompileTime, Cols = Traits::ColsAtCompileTime;
static const int MaxRows = Traits::MaxRowsAtCompileTime, MaxCols = Traits::MaxColsAtCompileTime;
typedef std::complex<Scalar> ComplexScalar;
typedef Matrix<ComplexScalar, Rows, Cols, 0, MaxRows, MaxCols> ComplexMatrix;
ComplexMatrix CA = A.template cast<ComplexScalar>();
ComplexMatrix Cresult;
matrix_function_compute<ComplexMatrix>::run(CA, atomic, Cresult);
result = Cresult.real();
}
};
/** \internal \ingroup MatrixFunctions_Module
* \brief Partial specialization of MatrixFunction for complex matrices
*/
template <typename MatrixType>
struct matrix_function_compute<MatrixType, 1>
{
template <typename MatA, typename AtomicType, typename ResultType>
static void run(const MatA& A, AtomicType& atomic, ResultType &result)
{
typedef internal::traits<MatrixType> Traits;
// compute Schur decomposition of A
const ComplexSchur<MatrixType> schurOfA(A);
MatrixType T = schurOfA.matrixT();
MatrixType U = schurOfA.matrixU();
// partition eigenvalues into clusters of ei'vals "close" to each other
std::list<std::list<Index> > clusters;
matrix_function_partition_eigenvalues(T.diagonal(), clusters);
// compute size of each cluster
Matrix<Index, Dynamic, 1> clusterSize;
matrix_function_compute_cluster_size(clusters, clusterSize);
// blockStart[i] is row index at which block corresponding to i-th cluster starts
Matrix<Index, Dynamic, 1> blockStart;
matrix_function_compute_block_start(clusterSize, blockStart);
// compute map so that eivalToCluster[i] = j means that i-th ei'val is in j-th cluster
Matrix<Index, Dynamic, 1> eivalToCluster;
matrix_function_compute_map(T.diagonal(), clusters, eivalToCluster);
// compute permutation which groups ei'vals in same cluster together
Matrix<Index, Traits::RowsAtCompileTime, 1> permutation;
matrix_function_compute_permutation(blockStart, eivalToCluster, permutation);
// permute Schur decomposition
matrix_function_permute_schur(permutation, U, T);
// compute result
MatrixType fT; // matrix function applied to T
matrix_function_compute_block_atomic(T, atomic, blockStart, clusterSize, fT);
matrix_function_compute_above_diagonal(T, blockStart, clusterSize, fT);
result = U * (fT.template triangularView<Upper>() * U.adjoint());
}
};
} // end of namespace internal
/** \ingroup MatrixFunctions_Module
*
* \brief Proxy for the matrix function of some matrix (expression).
*
* \tparam Derived Type of the argument to the matrix function.
*
* This class holds the argument to the matrix function until it is assigned or evaluated for some other
* reason (so the argument should not be changed in the meantime). It is the return type of
* matrixBase::matrixFunction() and related functions and most of the time this is the only way it is used.
*/
template<typename Derived> class MatrixFunctionReturnValue
: public ReturnByValue<MatrixFunctionReturnValue<Derived> >
{
public:
typedef typename Derived::Scalar Scalar;
typedef typename Derived::Index Index;
typedef typename internal::stem_function<Scalar>::type StemFunction;
protected:
typedef typename internal::ref_selector<Derived>::type DerivedNested;
public:
/** \brief Constructor.
*
* \param[in] A %Matrix (expression) forming the argument of the matrix function.
* \param[in] f Stem function for matrix function under consideration.
*/
MatrixFunctionReturnValue(const Derived& A, StemFunction f) : m_A(A), m_f(f) { }
/** \brief Compute the matrix function.
*
* \param[out] result \p f applied to \p A, where \p f and \p A are as in the constructor.
*/
template <typename ResultType>
inline void evalTo(ResultType& result) const
{
typedef typename internal::nested_eval<Derived, 10>::type NestedEvalType;
typedef typename internal::remove_all<NestedEvalType>::type NestedEvalTypeClean;
typedef internal::traits<NestedEvalTypeClean> Traits;
static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
typedef internal::MatrixFunctionAtomic<DynMatrixType> AtomicType;
AtomicType atomic(m_f);
internal::matrix_function_compute<typename NestedEvalTypeClean::PlainObject>::run(m_A, atomic, result);
}
Index rows() const { return m_A.rows(); }
Index cols() const { return m_A.cols(); }
private:
const DerivedNested m_A;
StemFunction *m_f;
};
namespace internal {
template<typename Derived>
struct traits<MatrixFunctionReturnValue<Derived> >
{
typedef typename Derived::PlainObject ReturnType;
};
}
/********** MatrixBase methods **********/
template <typename Derived>
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::matrixFunction(typename internal::stem_function<typename internal::traits<Derived>::Scalar>::type f) const
{
eigen_assert(rows() == cols());
return MatrixFunctionReturnValue<Derived>(derived(), f);
}
template <typename Derived>
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const
{
eigen_assert(rows() == cols());
typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_sin<ComplexScalar>);
}
template <typename Derived>
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const
{
eigen_assert(rows() == cols());
typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_cos<ComplexScalar>);
}
template <typename Derived>
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh() const
{
eigen_assert(rows() == cols());
typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_sinh<ComplexScalar>);
}
template <typename Derived>
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const
{
eigen_assert(rows() == cols());
typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_cosh<ComplexScalar>);
}
} // end namespace Eigen
#endif // EIGEN_MATRIX_FUNCTION_H

View File

@@ -0,0 +1,373 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
// Copyright (C) 2011 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MATRIX_LOGARITHM
#define EIGEN_MATRIX_LOGARITHM
namespace Eigen {
namespace internal {
template <typename Scalar>
struct matrix_log_min_pade_degree
{
static const int value = 3;
};
template <typename Scalar>
struct matrix_log_max_pade_degree
{
typedef typename NumTraits<Scalar>::Real RealScalar;
static const int value = std::numeric_limits<RealScalar>::digits<= 24? 5: // single precision
std::numeric_limits<RealScalar>::digits<= 53? 7: // double precision
std::numeric_limits<RealScalar>::digits<= 64? 8: // extended precision
std::numeric_limits<RealScalar>::digits<=106? 10: // double-double
11; // quadruple precision
};
/** \brief Compute logarithm of 2x2 triangular matrix. */
template <typename MatrixType>
void matrix_log_compute_2x2(const MatrixType& A, MatrixType& result)
{
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
using std::abs;
using std::ceil;
using std::imag;
using std::log;
Scalar logA00 = log(A(0,0));
Scalar logA11 = log(A(1,1));
result(0,0) = logA00;
result(1,0) = Scalar(0);
result(1,1) = logA11;
Scalar y = A(1,1) - A(0,0);
if (y==Scalar(0))
{
result(0,1) = A(0,1) / A(0,0);
}
else if ((abs(A(0,0)) < RealScalar(0.5)*abs(A(1,1))) || (abs(A(0,0)) > 2*abs(A(1,1))))
{
result(0,1) = A(0,1) * (logA11 - logA00) / y;
}
else
{
// computation in previous branch is inaccurate if A(1,1) \approx A(0,0)
int unwindingNumber = static_cast<int>(ceil((imag(logA11 - logA00) - RealScalar(EIGEN_PI)) / RealScalar(2*EIGEN_PI)));
result(0,1) = A(0,1) * (numext::log1p(y/A(0,0)) + Scalar(0,2*EIGEN_PI*unwindingNumber)) / y;
}
}
/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = float) */
inline int matrix_log_get_pade_degree(float normTminusI)
{
const float maxNormForPade[] = { 2.5111573934555054e-1 /* degree = 3 */ , 4.0535837411880493e-1,
5.3149729967117310e-1 };
const int minPadeDegree = matrix_log_min_pade_degree<float>::value;
const int maxPadeDegree = matrix_log_max_pade_degree<float>::value;
int degree = minPadeDegree;
for (; degree <= maxPadeDegree; ++degree)
if (normTminusI <= maxNormForPade[degree - minPadeDegree])
break;
return degree;
}
/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = double) */
inline int matrix_log_get_pade_degree(double normTminusI)
{
const double maxNormForPade[] = { 1.6206284795015624e-2 /* degree = 3 */ , 5.3873532631381171e-2,
1.1352802267628681e-1, 1.8662860613541288e-1, 2.642960831111435e-1 };
const int minPadeDegree = matrix_log_min_pade_degree<double>::value;
const int maxPadeDegree = matrix_log_max_pade_degree<double>::value;
int degree = minPadeDegree;
for (; degree <= maxPadeDegree; ++degree)
if (normTminusI <= maxNormForPade[degree - minPadeDegree])
break;
return degree;
}
/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = long double) */
inline int matrix_log_get_pade_degree(long double normTminusI)
{
#if LDBL_MANT_DIG == 53 // double precision
const long double maxNormForPade[] = { 1.6206284795015624e-2L /* degree = 3 */ , 5.3873532631381171e-2L,
1.1352802267628681e-1L, 1.8662860613541288e-1L, 2.642960831111435e-1L };
#elif LDBL_MANT_DIG <= 64 // extended precision
const long double maxNormForPade[] = { 5.48256690357782863103e-3L /* degree = 3 */, 2.34559162387971167321e-2L,
5.84603923897347449857e-2L, 1.08486423756725170223e-1L, 1.68385767881294446649e-1L,
2.32777776523703892094e-1L };
#elif LDBL_MANT_DIG <= 106 // double-double
const long double maxNormForPade[] = { 8.58970550342939562202529664318890e-5L /* degree = 3 */,
9.34074328446359654039446552677759e-4L, 4.26117194647672175773064114582860e-3L,
1.21546224740281848743149666560464e-2L, 2.61100544998339436713088248557444e-2L,
4.66170074627052749243018566390567e-2L, 7.32585144444135027565872014932387e-2L,
1.05026503471351080481093652651105e-1L };
#else // quadruple precision
const long double maxNormForPade[] = { 4.7419931187193005048501568167858103e-5L /* degree = 3 */,
5.8853168473544560470387769480192666e-4L, 2.9216120366601315391789493628113520e-3L,
8.8415758124319434347116734705174308e-3L, 1.9850836029449446668518049562565291e-2L,
3.6688019729653446926585242192447447e-2L, 5.9290962294020186998954055264528393e-2L,
8.6998436081634343903250580992127677e-2L, 1.1880960220216759245467951592883642e-1L };
#endif
const int minPadeDegree = matrix_log_min_pade_degree<long double>::value;
const int maxPadeDegree = matrix_log_max_pade_degree<long double>::value;
int degree = minPadeDegree;
for (; degree <= maxPadeDegree; ++degree)
if (normTminusI <= maxNormForPade[degree - minPadeDegree])
break;
return degree;
}
/* \brief Compute Pade approximation to matrix logarithm */
template <typename MatrixType>
void matrix_log_compute_pade(MatrixType& result, const MatrixType& T, int degree)
{
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
const int minPadeDegree = 3;
const int maxPadeDegree = 11;
assert(degree >= minPadeDegree && degree <= maxPadeDegree);
const RealScalar nodes[][maxPadeDegree] = {
{ 0.1127016653792583114820734600217600L, 0.5000000000000000000000000000000000L, // degree 3
0.8872983346207416885179265399782400L },
{ 0.0694318442029737123880267555535953L, 0.3300094782075718675986671204483777L, // degree 4
0.6699905217924281324013328795516223L, 0.9305681557970262876119732444464048L },
{ 0.0469100770306680036011865608503035L, 0.2307653449471584544818427896498956L, // degree 5
0.5000000000000000000000000000000000L, 0.7692346550528415455181572103501044L,
0.9530899229693319963988134391496965L },
{ 0.0337652428984239860938492227530027L, 0.1693953067668677431693002024900473L, // degree 6
0.3806904069584015456847491391596440L, 0.6193095930415984543152508608403560L,
0.8306046932331322568306997975099527L, 0.9662347571015760139061507772469973L },
{ 0.0254460438286207377369051579760744L, 0.1292344072003027800680676133596058L, // degree 7
0.2970774243113014165466967939615193L, 0.5000000000000000000000000000000000L,
0.7029225756886985834533032060384807L, 0.8707655927996972199319323866403942L,
0.9745539561713792622630948420239256L },
{ 0.0198550717512318841582195657152635L, 0.1016667612931866302042230317620848L, // degree 8
0.2372337950418355070911304754053768L, 0.4082826787521750975302619288199080L,
0.5917173212478249024697380711800920L, 0.7627662049581644929088695245946232L,
0.8983332387068133697957769682379152L, 0.9801449282487681158417804342847365L },
{ 0.0159198802461869550822118985481636L, 0.0819844463366821028502851059651326L, // degree 9
0.1933142836497048013456489803292629L, 0.3378732882980955354807309926783317L,
0.5000000000000000000000000000000000L, 0.6621267117019044645192690073216683L,
0.8066857163502951986543510196707371L, 0.9180155536633178971497148940348674L,
0.9840801197538130449177881014518364L },
{ 0.0130467357414141399610179939577740L, 0.0674683166555077446339516557882535L, // degree 10
0.1602952158504877968828363174425632L, 0.2833023029353764046003670284171079L,
0.4255628305091843945575869994351400L, 0.5744371694908156054424130005648600L,
0.7166976970646235953996329715828921L, 0.8397047841495122031171636825574368L,
0.9325316833444922553660483442117465L, 0.9869532642585858600389820060422260L },
{ 0.0108856709269715035980309994385713L, 0.0564687001159523504624211153480364L, // degree 11
0.1349239972129753379532918739844233L, 0.2404519353965940920371371652706952L,
0.3652284220238275138342340072995692L, 0.5000000000000000000000000000000000L,
0.6347715779761724861657659927004308L, 0.7595480646034059079628628347293048L,
0.8650760027870246620467081260155767L, 0.9435312998840476495375788846519636L,
0.9891143290730284964019690005614287L } };
const RealScalar weights[][maxPadeDegree] = {
{ 0.2777777777777777777777777777777778L, 0.4444444444444444444444444444444444L, // degree 3
0.2777777777777777777777777777777778L },
{ 0.1739274225687269286865319746109997L, 0.3260725774312730713134680253890003L, // degree 4
0.3260725774312730713134680253890003L, 0.1739274225687269286865319746109997L },
{ 0.1184634425280945437571320203599587L, 0.2393143352496832340206457574178191L, // degree 5
0.2844444444444444444444444444444444L, 0.2393143352496832340206457574178191L,
0.1184634425280945437571320203599587L },
{ 0.0856622461895851725201480710863665L, 0.1803807865240693037849167569188581L, // degree 6
0.2339569672863455236949351719947755L, 0.2339569672863455236949351719947755L,
0.1803807865240693037849167569188581L, 0.0856622461895851725201480710863665L },
{ 0.0647424830844348466353057163395410L, 0.1398526957446383339507338857118898L, // degree 7
0.1909150252525594724751848877444876L, 0.2089795918367346938775510204081633L,
0.1909150252525594724751848877444876L, 0.1398526957446383339507338857118898L,
0.0647424830844348466353057163395410L },
{ 0.0506142681451881295762656771549811L, 0.1111905172266872352721779972131204L, // degree 8
0.1568533229389436436689811009933007L, 0.1813418916891809914825752246385978L,
0.1813418916891809914825752246385978L, 0.1568533229389436436689811009933007L,
0.1111905172266872352721779972131204L, 0.0506142681451881295762656771549811L },
{ 0.0406371941807872059859460790552618L, 0.0903240803474287020292360156214564L, // degree 9
0.1303053482014677311593714347093164L, 0.1561735385200014200343152032922218L,
0.1651196775006298815822625346434870L, 0.1561735385200014200343152032922218L,
0.1303053482014677311593714347093164L, 0.0903240803474287020292360156214564L,
0.0406371941807872059859460790552618L },
{ 0.0333356721543440687967844049466659L, 0.0747256745752902965728881698288487L, // degree 10
0.1095431812579910219977674671140816L, 0.1346333596549981775456134607847347L,
0.1477621123573764350869464973256692L, 0.1477621123573764350869464973256692L,
0.1346333596549981775456134607847347L, 0.1095431812579910219977674671140816L,
0.0747256745752902965728881698288487L, 0.0333356721543440687967844049466659L },
{ 0.0278342835580868332413768602212743L, 0.0627901847324523123173471496119701L, // degree 11
0.0931451054638671257130488207158280L, 0.1165968822959952399592618524215876L,
0.1314022722551233310903444349452546L, 0.1364625433889503153572417641681711L,
0.1314022722551233310903444349452546L, 0.1165968822959952399592618524215876L,
0.0931451054638671257130488207158280L, 0.0627901847324523123173471496119701L,
0.0278342835580868332413768602212743L } };
MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
result.setZero(T.rows(), T.rows());
for (int k = 0; k < degree; ++k) {
RealScalar weight = weights[degree-minPadeDegree][k];
RealScalar node = nodes[degree-minPadeDegree][k];
result += weight * (MatrixType::Identity(T.rows(), T.rows()) + node * TminusI)
.template triangularView<Upper>().solve(TminusI);
}
}
/** \brief Compute logarithm of triangular matrices with size > 2.
* \details This uses a inverse scale-and-square algorithm. */
template <typename MatrixType>
void matrix_log_compute_big(const MatrixType& A, MatrixType& result)
{
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
using std::pow;
int numberOfSquareRoots = 0;
int numberOfExtraSquareRoots = 0;
int degree;
MatrixType T = A, sqrtT;
int maxPadeDegree = matrix_log_max_pade_degree<Scalar>::value;
const RealScalar maxNormForPade = maxPadeDegree<= 5? 5.3149729967117310e-1L: // single precision
maxPadeDegree<= 7? 2.6429608311114350e-1L: // double precision
maxPadeDegree<= 8? 2.32777776523703892094e-1L: // extended precision
maxPadeDegree<=10? 1.05026503471351080481093652651105e-1L: // double-double
1.1880960220216759245467951592883642e-1L; // quadruple precision
while (true) {
RealScalar normTminusI = (T - MatrixType::Identity(T.rows(), T.rows())).cwiseAbs().colwise().sum().maxCoeff();
if (normTminusI < maxNormForPade) {
degree = matrix_log_get_pade_degree(normTminusI);
int degree2 = matrix_log_get_pade_degree(normTminusI / RealScalar(2));
if ((degree - degree2 <= 1) || (numberOfExtraSquareRoots == 1))
break;
++numberOfExtraSquareRoots;
}
matrix_sqrt_triangular(T, sqrtT);
T = sqrtT.template triangularView<Upper>();
++numberOfSquareRoots;
}
matrix_log_compute_pade(result, T, degree);
result *= pow(RealScalar(2), numberOfSquareRoots);
}
/** \ingroup MatrixFunctions_Module
* \class MatrixLogarithmAtomic
* \brief Helper class for computing matrix logarithm of atomic matrices.
*
* Here, an atomic matrix is a triangular matrix whose diagonal entries are close to each other.
*
* \sa class MatrixFunctionAtomic, MatrixBase::log()
*/
template <typename MatrixType>
class MatrixLogarithmAtomic
{
public:
/** \brief Compute matrix logarithm of atomic matrix
* \param[in] A argument of matrix logarithm, should be upper triangular and atomic
* \returns The logarithm of \p A.
*/
MatrixType compute(const MatrixType& A);
};
template <typename MatrixType>
MatrixType MatrixLogarithmAtomic<MatrixType>::compute(const MatrixType& A)
{
using std::log;
MatrixType result(A.rows(), A.rows());
if (A.rows() == 1)
result(0,0) = log(A(0,0));
else if (A.rows() == 2)
matrix_log_compute_2x2(A, result);
else
matrix_log_compute_big(A, result);
return result;
}
} // end of namespace internal
/** \ingroup MatrixFunctions_Module
*
* \brief Proxy for the matrix logarithm of some matrix (expression).
*
* \tparam Derived Type of the argument to the matrix function.
*
* This class holds the argument to the matrix function until it is
* assigned or evaluated for some other reason (so the argument
* should not be changed in the meantime). It is the return type of
* MatrixBase::log() and most of the time this is the only way it
* is used.
*/
template<typename Derived> class MatrixLogarithmReturnValue
: public ReturnByValue<MatrixLogarithmReturnValue<Derived> >
{
public:
typedef typename Derived::Scalar Scalar;
typedef typename Derived::Index Index;
protected:
typedef typename internal::ref_selector<Derived>::type DerivedNested;
public:
/** \brief Constructor.
*
* \param[in] A %Matrix (expression) forming the argument of the matrix logarithm.
*/
explicit MatrixLogarithmReturnValue(const Derived& A) : m_A(A) { }
/** \brief Compute the matrix logarithm.
*
* \param[out] result Logarithm of \c A, where \c A is as specified in the constructor.
*/
template <typename ResultType>
inline void evalTo(ResultType& result) const
{
typedef typename internal::nested_eval<Derived, 10>::type DerivedEvalType;
typedef typename internal::remove_all<DerivedEvalType>::type DerivedEvalTypeClean;
typedef internal::traits<DerivedEvalTypeClean> Traits;
static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
typedef internal::MatrixLogarithmAtomic<DynMatrixType> AtomicType;
AtomicType atomic;
internal::matrix_function_compute<typename DerivedEvalTypeClean::PlainObject>::run(m_A, atomic, result);
}
Index rows() const { return m_A.rows(); }
Index cols() const { return m_A.cols(); }
private:
const DerivedNested m_A;
};
namespace internal {
template<typename Derived>
struct traits<MatrixLogarithmReturnValue<Derived> >
{
typedef typename Derived::PlainObject ReturnType;
};
}
/********** MatrixBase method **********/
template <typename Derived>
const MatrixLogarithmReturnValue<Derived> MatrixBase<Derived>::log() const
{
eigen_assert(rows() == cols());
return MatrixLogarithmReturnValue<Derived>(derived());
}
} // end namespace Eigen
#endif // EIGEN_MATRIX_LOGARITHM

View File

@@ -0,0 +1,709 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012, 2013 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MATRIX_POWER
#define EIGEN_MATRIX_POWER
namespace Eigen {
template<typename MatrixType> class MatrixPower;
/**
* \ingroup MatrixFunctions_Module
*
* \brief Proxy for the matrix power of some matrix.
*
* \tparam MatrixType type of the base, a matrix.
*
* This class holds the arguments to the matrix power until it is
* assigned or evaluated for some other reason (so the argument
* should not be changed in the meantime). It is the return type of
* MatrixPower::operator() and related functions and most of the
* time this is the only way it is used.
*/
/* TODO This class is only used by MatrixPower, so it should be nested
* into MatrixPower, like MatrixPower::ReturnValue. However, my
* compiler complained about unused template parameter in the
* following declaration in namespace internal.
*
* template<typename MatrixType>
* struct traits<MatrixPower<MatrixType>::ReturnValue>;
*/
template<typename MatrixType>
class MatrixPowerParenthesesReturnValue : public ReturnByValue< MatrixPowerParenthesesReturnValue<MatrixType> >
{
public:
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
/**
* \brief Constructor.
*
* \param[in] pow %MatrixPower storing the base.
* \param[in] p scalar, the exponent of the matrix power.
*/
MatrixPowerParenthesesReturnValue(MatrixPower<MatrixType>& pow, RealScalar p) : m_pow(pow), m_p(p)
{ }
/**
* \brief Compute the matrix power.
*
* \param[out] result
*/
template<typename ResultType>
inline void evalTo(ResultType& result) const
{ m_pow.compute(result, m_p); }
Index rows() const { return m_pow.rows(); }
Index cols() const { return m_pow.cols(); }
private:
MatrixPower<MatrixType>& m_pow;
const RealScalar m_p;
};
/**
* \ingroup MatrixFunctions_Module
*
* \brief Class for computing matrix powers.
*
* \tparam MatrixType type of the base, expected to be an instantiation
* of the Matrix class template.
*
* This class is capable of computing triangular real/complex matrices
* raised to a power in the interval \f$ (-1, 1) \f$.
*
* \note Currently this class is only used by MatrixPower. One may
* insist that this be nested into MatrixPower. This class is here to
* faciliate future development of triangular matrix functions.
*/
template<typename MatrixType>
class MatrixPowerAtomic : internal::noncopyable
{
private:
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
};
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef std::complex<RealScalar> ComplexScalar;
typedef typename MatrixType::Index Index;
typedef Block<MatrixType,Dynamic,Dynamic> ResultType;
const MatrixType& m_A;
RealScalar m_p;
void computePade(int degree, const MatrixType& IminusT, ResultType& res) const;
void compute2x2(ResultType& res, RealScalar p) const;
void computeBig(ResultType& res) const;
static int getPadeDegree(float normIminusT);
static int getPadeDegree(double normIminusT);
static int getPadeDegree(long double normIminusT);
static ComplexScalar computeSuperDiag(const ComplexScalar&, const ComplexScalar&, RealScalar p);
static RealScalar computeSuperDiag(RealScalar, RealScalar, RealScalar p);
public:
/**
* \brief Constructor.
*
* \param[in] T the base of the matrix power.
* \param[in] p the exponent of the matrix power, should be in
* \f$ (-1, 1) \f$.
*
* The class stores a reference to T, so it should not be changed
* (or destroyed) before evaluation. Only the upper triangular
* part of T is read.
*/
MatrixPowerAtomic(const MatrixType& T, RealScalar p);
/**
* \brief Compute the matrix power.
*
* \param[out] res \f$ A^p \f$ where A and p are specified in the
* constructor.
*/
void compute(ResultType& res) const;
};
template<typename MatrixType>
MatrixPowerAtomic<MatrixType>::MatrixPowerAtomic(const MatrixType& T, RealScalar p) :
m_A(T), m_p(p)
{
eigen_assert(T.rows() == T.cols());
eigen_assert(p > -1 && p < 1);
}
template<typename MatrixType>
void MatrixPowerAtomic<MatrixType>::compute(ResultType& res) const
{
using std::pow;
switch (m_A.rows()) {
case 0:
break;
case 1:
res(0,0) = pow(m_A(0,0), m_p);
break;
case 2:
compute2x2(res, m_p);
break;
default:
computeBig(res);
}
}
template<typename MatrixType>
void MatrixPowerAtomic<MatrixType>::computePade(int degree, const MatrixType& IminusT, ResultType& res) const
{
int i = 2*degree;
res = (m_p-degree) / (2*i-2) * IminusT;
for (--i; i; --i) {
res = (MatrixType::Identity(IminusT.rows(), IminusT.cols()) + res).template triangularView<Upper>()
.solve((i==1 ? -m_p : i&1 ? (-m_p-i/2)/(2*i) : (m_p-i/2)/(2*i-2)) * IminusT).eval();
}
res += MatrixType::Identity(IminusT.rows(), IminusT.cols());
}
// This function assumes that res has the correct size (see bug 614)
template<typename MatrixType>
void MatrixPowerAtomic<MatrixType>::compute2x2(ResultType& res, RealScalar p) const
{
using std::abs;
using std::pow;
res.coeffRef(0,0) = pow(m_A.coeff(0,0), p);
for (Index i=1; i < m_A.cols(); ++i) {
res.coeffRef(i,i) = pow(m_A.coeff(i,i), p);
if (m_A.coeff(i-1,i-1) == m_A.coeff(i,i))
res.coeffRef(i-1,i) = p * pow(m_A.coeff(i,i), p-1);
else if (2*abs(m_A.coeff(i-1,i-1)) < abs(m_A.coeff(i,i)) || 2*abs(m_A.coeff(i,i)) < abs(m_A.coeff(i-1,i-1)))
res.coeffRef(i-1,i) = (res.coeff(i,i)-res.coeff(i-1,i-1)) / (m_A.coeff(i,i)-m_A.coeff(i-1,i-1));
else
res.coeffRef(i-1,i) = computeSuperDiag(m_A.coeff(i,i), m_A.coeff(i-1,i-1), p);
res.coeffRef(i-1,i) *= m_A.coeff(i-1,i);
}
}
template<typename MatrixType>
void MatrixPowerAtomic<MatrixType>::computeBig(ResultType& res) const
{
using std::ldexp;
const int digits = std::numeric_limits<RealScalar>::digits;
const RealScalar maxNormForPade = digits <= 24? 4.3386528e-1L // single precision
: digits <= 53? 2.789358995219730e-1L // double precision
: digits <= 64? 2.4471944416607995472e-1L // extended precision
: digits <= 106? 1.1016843812851143391275867258512e-1L // double-double
: 9.134603732914548552537150753385375e-2L; // quadruple precision
MatrixType IminusT, sqrtT, T = m_A.template triangularView<Upper>();
RealScalar normIminusT;
int degree, degree2, numberOfSquareRoots = 0;
bool hasExtraSquareRoot = false;
for (Index i=0; i < m_A.cols(); ++i)
eigen_assert(m_A(i,i) != RealScalar(0));
while (true) {
IminusT = MatrixType::Identity(m_A.rows(), m_A.cols()) - T;
normIminusT = IminusT.cwiseAbs().colwise().sum().maxCoeff();
if (normIminusT < maxNormForPade) {
degree = getPadeDegree(normIminusT);
degree2 = getPadeDegree(normIminusT/2);
if (degree - degree2 <= 1 || hasExtraSquareRoot)
break;
hasExtraSquareRoot = true;
}
matrix_sqrt_triangular(T, sqrtT);
T = sqrtT.template triangularView<Upper>();
++numberOfSquareRoots;
}
computePade(degree, IminusT, res);
for (; numberOfSquareRoots; --numberOfSquareRoots) {
compute2x2(res, ldexp(m_p, -numberOfSquareRoots));
res = res.template triangularView<Upper>() * res;
}
compute2x2(res, m_p);
}
template<typename MatrixType>
inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(float normIminusT)
{
const float maxNormForPade[] = { 2.8064004e-1f /* degree = 3 */ , 4.3386528e-1f };
int degree = 3;
for (; degree <= 4; ++degree)
if (normIminusT <= maxNormForPade[degree - 3])
break;
return degree;
}
template<typename MatrixType>
inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(double normIminusT)
{
const double maxNormForPade[] = { 1.884160592658218e-2 /* degree = 3 */ , 6.038881904059573e-2, 1.239917516308172e-1,
1.999045567181744e-1, 2.789358995219730e-1 };
int degree = 3;
for (; degree <= 7; ++degree)
if (normIminusT <= maxNormForPade[degree - 3])
break;
return degree;
}
template<typename MatrixType>
inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(long double normIminusT)
{
#if LDBL_MANT_DIG == 53
const int maxPadeDegree = 7;
const double maxNormForPade[] = { 1.884160592658218e-2L /* degree = 3 */ , 6.038881904059573e-2L, 1.239917516308172e-1L,
1.999045567181744e-1L, 2.789358995219730e-1L };
#elif LDBL_MANT_DIG <= 64
const int maxPadeDegree = 8;
const long double maxNormForPade[] = { 6.3854693117491799460e-3L /* degree = 3 */ , 2.6394893435456973676e-2L,
6.4216043030404063729e-2L, 1.1701165502926694307e-1L, 1.7904284231268670284e-1L, 2.4471944416607995472e-1L };
#elif LDBL_MANT_DIG <= 106
const int maxPadeDegree = 10;
const double maxNormForPade[] = { 1.0007161601787493236741409687186e-4L /* degree = 3 */ ,
1.0007161601787493236741409687186e-3L, 4.7069769360887572939882574746264e-3L, 1.3220386624169159689406653101695e-2L,
2.8063482381631737920612944054906e-2L, 4.9625993951953473052385361085058e-2L, 7.7367040706027886224557538328171e-2L,
1.1016843812851143391275867258512e-1L };
#else
const int maxPadeDegree = 10;
const double maxNormForPade[] = { 5.524506147036624377378713555116378e-5L /* degree = 3 */ ,
6.640600568157479679823602193345995e-4L, 3.227716520106894279249709728084626e-3L,
9.619593944683432960546978734646284e-3L, 2.134595382433742403911124458161147e-2L,
3.908166513900489428442993794761185e-2L, 6.266780814639442865832535460550138e-2L,
9.134603732914548552537150753385375e-2L };
#endif
int degree = 3;
for (; degree <= maxPadeDegree; ++degree)
if (normIminusT <= maxNormForPade[degree - 3])
break;
return degree;
}
template<typename MatrixType>
inline typename MatrixPowerAtomic<MatrixType>::ComplexScalar
MatrixPowerAtomic<MatrixType>::computeSuperDiag(const ComplexScalar& curr, const ComplexScalar& prev, RealScalar p)
{
using std::ceil;
using std::exp;
using std::log;
using std::sinh;
ComplexScalar logCurr = log(curr);
ComplexScalar logPrev = log(prev);
int unwindingNumber = ceil((numext::imag(logCurr - logPrev) - RealScalar(EIGEN_PI)) / RealScalar(2*EIGEN_PI));
ComplexScalar w = numext::log1p((curr-prev)/prev)/RealScalar(2) + ComplexScalar(0, EIGEN_PI*unwindingNumber);
return RealScalar(2) * exp(RealScalar(0.5) * p * (logCurr + logPrev)) * sinh(p * w) / (curr - prev);
}
template<typename MatrixType>
inline typename MatrixPowerAtomic<MatrixType>::RealScalar
MatrixPowerAtomic<MatrixType>::computeSuperDiag(RealScalar curr, RealScalar prev, RealScalar p)
{
using std::exp;
using std::log;
using std::sinh;
RealScalar w = numext::log1p((curr-prev)/prev)/RealScalar(2);
return 2 * exp(p * (log(curr) + log(prev)) / 2) * sinh(p * w) / (curr - prev);
}
/**
* \ingroup MatrixFunctions_Module
*
* \brief Class for computing matrix powers.
*
* \tparam MatrixType type of the base, expected to be an instantiation
* of the Matrix class template.
*
* This class is capable of computing real/complex matrices raised to
* an arbitrary real power. Meanwhile, it saves the result of Schur
* decomposition if an non-integral power has even been calculated.
* Therefore, if you want to compute multiple (>= 2) matrix powers
* for the same matrix, using the class directly is more efficient than
* calling MatrixBase::pow().
*
* Example:
* \include MatrixPower_optimal.cpp
* Output: \verbinclude MatrixPower_optimal.out
*/
template<typename MatrixType>
class MatrixPower : internal::noncopyable
{
private:
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
public:
/**
* \brief Constructor.
*
* \param[in] A the base of the matrix power.
*
* The class stores a reference to A, so it should not be changed
* (or destroyed) before evaluation.
*/
explicit MatrixPower(const MatrixType& A) :
m_A(A),
m_conditionNumber(0),
m_rank(A.cols()),
m_nulls(0)
{ eigen_assert(A.rows() == A.cols()); }
/**
* \brief Returns the matrix power.
*
* \param[in] p exponent, a real scalar.
* \return The expression \f$ A^p \f$, where A is specified in the
* constructor.
*/
const MatrixPowerParenthesesReturnValue<MatrixType> operator()(RealScalar p)
{ return MatrixPowerParenthesesReturnValue<MatrixType>(*this, p); }
/**
* \brief Compute the matrix power.
*
* \param[in] p exponent, a real scalar.
* \param[out] res \f$ A^p \f$ where A is specified in the
* constructor.
*/
template<typename ResultType>
void compute(ResultType& res, RealScalar p);
Index rows() const { return m_A.rows(); }
Index cols() const { return m_A.cols(); }
private:
typedef std::complex<RealScalar> ComplexScalar;
typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0,
MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> ComplexMatrix;
/** \brief Reference to the base of matrix power. */
typename MatrixType::Nested m_A;
/** \brief Temporary storage. */
MatrixType m_tmp;
/** \brief Store the result of Schur decomposition. */
ComplexMatrix m_T, m_U;
/** \brief Store fractional power of m_T. */
ComplexMatrix m_fT;
/**
* \brief Condition number of m_A.
*
* It is initialized as 0 to avoid performing unnecessary Schur
* decomposition, which is the bottleneck.
*/
RealScalar m_conditionNumber;
/** \brief Rank of m_A. */
Index m_rank;
/** \brief Rank deficiency of m_A. */
Index m_nulls;
/**
* \brief Split p into integral part and fractional part.
*
* \param[in] p The exponent.
* \param[out] p The fractional part ranging in \f$ (-1, 1) \f$.
* \param[out] intpart The integral part.
*
* Only if the fractional part is nonzero, it calls initialize().
*/
void split(RealScalar& p, RealScalar& intpart);
/** \brief Perform Schur decomposition for fractional power. */
void initialize();
template<typename ResultType>
void computeIntPower(ResultType& res, RealScalar p);
template<typename ResultType>
void computeFracPower(ResultType& res, RealScalar p);
template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
static void revertSchur(
Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
const ComplexMatrix& T,
const ComplexMatrix& U);
template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
static void revertSchur(
Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
const ComplexMatrix& T,
const ComplexMatrix& U);
};
template<typename MatrixType>
template<typename ResultType>
void MatrixPower<MatrixType>::compute(ResultType& res, RealScalar p)
{
using std::pow;
switch (cols()) {
case 0:
break;
case 1:
res(0,0) = pow(m_A.coeff(0,0), p);
break;
default:
RealScalar intpart;
split(p, intpart);
res = MatrixType::Identity(rows(), cols());
computeIntPower(res, intpart);
if (p) computeFracPower(res, p);
}
}
template<typename MatrixType>
void MatrixPower<MatrixType>::split(RealScalar& p, RealScalar& intpart)
{
using std::floor;
using std::pow;
intpart = floor(p);
p -= intpart;
// Perform Schur decomposition if it is not yet performed and the power is
// not an integer.
if (!m_conditionNumber && p)
initialize();
// Choose the more stable of intpart = floor(p) and intpart = ceil(p).
if (p > RealScalar(0.5) && p > (1-p) * pow(m_conditionNumber, p)) {
--p;
++intpart;
}
}
template<typename MatrixType>
void MatrixPower<MatrixType>::initialize()
{
const ComplexSchur<MatrixType> schurOfA(m_A);
JacobiRotation<ComplexScalar> rot;
ComplexScalar eigenvalue;
m_fT.resizeLike(m_A);
m_T = schurOfA.matrixT();
m_U = schurOfA.matrixU();
m_conditionNumber = m_T.diagonal().array().abs().maxCoeff() / m_T.diagonal().array().abs().minCoeff();
// Move zero eigenvalues to the bottom right corner.
for (Index i = cols()-1; i>=0; --i) {
if (m_rank <= 2)
return;
if (m_T.coeff(i,i) == RealScalar(0)) {
for (Index j=i+1; j < m_rank; ++j) {
eigenvalue = m_T.coeff(j,j);
rot.makeGivens(m_T.coeff(j-1,j), eigenvalue);
m_T.applyOnTheRight(j-1, j, rot);
m_T.applyOnTheLeft(j-1, j, rot.adjoint());
m_T.coeffRef(j-1,j-1) = eigenvalue;
m_T.coeffRef(j,j) = RealScalar(0);
m_U.applyOnTheRight(j-1, j, rot);
}
--m_rank;
}
}
m_nulls = rows() - m_rank;
if (m_nulls) {
eigen_assert(m_T.bottomRightCorner(m_nulls, m_nulls).isZero()
&& "Base of matrix power should be invertible or with a semisimple zero eigenvalue.");
m_fT.bottomRows(m_nulls).fill(RealScalar(0));
}
}
template<typename MatrixType>
template<typename ResultType>
void MatrixPower<MatrixType>::computeIntPower(ResultType& res, RealScalar p)
{
using std::abs;
using std::fmod;
RealScalar pp = abs(p);
if (p<0)
m_tmp = m_A.inverse();
else
m_tmp = m_A;
while (true) {
if (fmod(pp, 2) >= 1)
res = m_tmp * res;
pp /= 2;
if (pp < 1)
break;
m_tmp *= m_tmp;
}
}
template<typename MatrixType>
template<typename ResultType>
void MatrixPower<MatrixType>::computeFracPower(ResultType& res, RealScalar p)
{
Block<ComplexMatrix,Dynamic,Dynamic> blockTp(m_fT, 0, 0, m_rank, m_rank);
eigen_assert(m_conditionNumber);
eigen_assert(m_rank + m_nulls == rows());
MatrixPowerAtomic<ComplexMatrix>(m_T.topLeftCorner(m_rank, m_rank), p).compute(blockTp);
if (m_nulls) {
m_fT.topRightCorner(m_rank, m_nulls) = m_T.topLeftCorner(m_rank, m_rank).template triangularView<Upper>()
.solve(blockTp * m_T.topRightCorner(m_rank, m_nulls));
}
revertSchur(m_tmp, m_fT, m_U);
res = m_tmp * res;
}
template<typename MatrixType>
template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
inline void MatrixPower<MatrixType>::revertSchur(
Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
const ComplexMatrix& T,
const ComplexMatrix& U)
{ res.noalias() = U * (T.template triangularView<Upper>() * U.adjoint()); }
template<typename MatrixType>
template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
inline void MatrixPower<MatrixType>::revertSchur(
Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
const ComplexMatrix& T,
const ComplexMatrix& U)
{ res.noalias() = (U * (T.template triangularView<Upper>() * U.adjoint())).real(); }
/**
* \ingroup MatrixFunctions_Module
*
* \brief Proxy for the matrix power of some matrix (expression).
*
* \tparam Derived type of the base, a matrix (expression).
*
* This class holds the arguments to the matrix power until it is
* assigned or evaluated for some other reason (so the argument
* should not be changed in the meantime). It is the return type of
* MatrixBase::pow() and related functions and most of the
* time this is the only way it is used.
*/
template<typename Derived>
class MatrixPowerReturnValue : public ReturnByValue< MatrixPowerReturnValue<Derived> >
{
public:
typedef typename Derived::PlainObject PlainObject;
typedef typename Derived::RealScalar RealScalar;
typedef typename Derived::Index Index;
/**
* \brief Constructor.
*
* \param[in] A %Matrix (expression), the base of the matrix power.
* \param[in] p real scalar, the exponent of the matrix power.
*/
MatrixPowerReturnValue(const Derived& A, RealScalar p) : m_A(A), m_p(p)
{ }
/**
* \brief Compute the matrix power.
*
* \param[out] result \f$ A^p \f$ where \p A and \p p are as in the
* constructor.
*/
template<typename ResultType>
inline void evalTo(ResultType& result) const
{ MatrixPower<PlainObject>(m_A.eval()).compute(result, m_p); }
Index rows() const { return m_A.rows(); }
Index cols() const { return m_A.cols(); }
private:
const Derived& m_A;
const RealScalar m_p;
};
/**
* \ingroup MatrixFunctions_Module
*
* \brief Proxy for the matrix power of some matrix (expression).
*
* \tparam Derived type of the base, a matrix (expression).
*
* This class holds the arguments to the matrix power until it is
* assigned or evaluated for some other reason (so the argument
* should not be changed in the meantime). It is the return type of
* MatrixBase::pow() and related functions and most of the
* time this is the only way it is used.
*/
template<typename Derived>
class MatrixComplexPowerReturnValue : public ReturnByValue< MatrixComplexPowerReturnValue<Derived> >
{
public:
typedef typename Derived::PlainObject PlainObject;
typedef typename std::complex<typename Derived::RealScalar> ComplexScalar;
typedef typename Derived::Index Index;
/**
* \brief Constructor.
*
* \param[in] A %Matrix (expression), the base of the matrix power.
* \param[in] p complex scalar, the exponent of the matrix power.
*/
MatrixComplexPowerReturnValue(const Derived& A, const ComplexScalar& p) : m_A(A), m_p(p)
{ }
/**
* \brief Compute the matrix power.
*
* Because \p p is complex, \f$ A^p \f$ is simply evaluated as \f$
* \exp(p \log(A)) \f$.
*
* \param[out] result \f$ A^p \f$ where \p A and \p p are as in the
* constructor.
*/
template<typename ResultType>
inline void evalTo(ResultType& result) const
{ result = (m_p * m_A.log()).exp(); }
Index rows() const { return m_A.rows(); }
Index cols() const { return m_A.cols(); }
private:
const Derived& m_A;
const ComplexScalar m_p;
};
namespace internal {
template<typename MatrixPowerType>
struct traits< MatrixPowerParenthesesReturnValue<MatrixPowerType> >
{ typedef typename MatrixPowerType::PlainObject ReturnType; };
template<typename Derived>
struct traits< MatrixPowerReturnValue<Derived> >
{ typedef typename Derived::PlainObject ReturnType; };
template<typename Derived>
struct traits< MatrixComplexPowerReturnValue<Derived> >
{ typedef typename Derived::PlainObject ReturnType; };
}
template<typename Derived>
const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(const RealScalar& p) const
{ return MatrixPowerReturnValue<Derived>(derived(), p); }
template<typename Derived>
const MatrixComplexPowerReturnValue<Derived> MatrixBase<Derived>::pow(const std::complex<RealScalar>& p) const
{ return MatrixComplexPowerReturnValue<Derived>(derived(), p); }
} // namespace Eigen
#endif // EIGEN_MATRIX_POWER

View File

@@ -0,0 +1,366 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MATRIX_SQUARE_ROOT
#define EIGEN_MATRIX_SQUARE_ROOT
namespace Eigen {
namespace internal {
// pre: T.block(i,i,2,2) has complex conjugate eigenvalues
// post: sqrtT.block(i,i,2,2) is square root of T.block(i,i,2,2)
template <typename MatrixType, typename ResultType>
void matrix_sqrt_quasi_triangular_2x2_diagonal_block(const MatrixType& T, typename MatrixType::Index i, ResultType& sqrtT)
{
// TODO: This case (2-by-2 blocks with complex conjugate eigenvalues) is probably hidden somewhere
// in EigenSolver. If we expose it, we could call it directly from here.
typedef typename traits<MatrixType>::Scalar Scalar;
Matrix<Scalar,2,2> block = T.template block<2,2>(i,i);
EigenSolver<Matrix<Scalar,2,2> > es(block);
sqrtT.template block<2,2>(i,i)
= (es.eigenvectors() * es.eigenvalues().cwiseSqrt().asDiagonal() * es.eigenvectors().inverse()).real();
}
// pre: block structure of T is such that (i,j) is a 1x1 block,
// all blocks of sqrtT to left of and below (i,j) are correct
// post: sqrtT(i,j) has the correct value
template <typename MatrixType, typename ResultType>
void matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
{
typedef typename traits<MatrixType>::Scalar Scalar;
Scalar tmp = (sqrtT.row(i).segment(i+1,j-i-1) * sqrtT.col(j).segment(i+1,j-i-1)).value();
sqrtT.coeffRef(i,j) = (T.coeff(i,j) - tmp) / (sqrtT.coeff(i,i) + sqrtT.coeff(j,j));
}
// similar to compute1x1offDiagonalBlock()
template <typename MatrixType, typename ResultType>
void matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
{
typedef typename traits<MatrixType>::Scalar Scalar;
Matrix<Scalar,1,2> rhs = T.template block<1,2>(i,j);
if (j-i > 1)
rhs -= sqrtT.block(i, i+1, 1, j-i-1) * sqrtT.block(i+1, j, j-i-1, 2);
Matrix<Scalar,2,2> A = sqrtT.coeff(i,i) * Matrix<Scalar,2,2>::Identity();
A += sqrtT.template block<2,2>(j,j).transpose();
sqrtT.template block<1,2>(i,j).transpose() = A.fullPivLu().solve(rhs.transpose());
}
// similar to compute1x1offDiagonalBlock()
template <typename MatrixType, typename ResultType>
void matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
{
typedef typename traits<MatrixType>::Scalar Scalar;
Matrix<Scalar,2,1> rhs = T.template block<2,1>(i,j);
if (j-i > 2)
rhs -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 1);
Matrix<Scalar,2,2> A = sqrtT.coeff(j,j) * Matrix<Scalar,2,2>::Identity();
A += sqrtT.template block<2,2>(i,i);
sqrtT.template block<2,1>(i,j) = A.fullPivLu().solve(rhs);
}
// solves the equation A X + X B = C where all matrices are 2-by-2
template <typename MatrixType>
void matrix_sqrt_quasi_triangular_solve_auxiliary_equation(MatrixType& X, const MatrixType& A, const MatrixType& B, const MatrixType& C)
{
typedef typename traits<MatrixType>::Scalar Scalar;
Matrix<Scalar,4,4> coeffMatrix = Matrix<Scalar,4,4>::Zero();
coeffMatrix.coeffRef(0,0) = A.coeff(0,0) + B.coeff(0,0);
coeffMatrix.coeffRef(1,1) = A.coeff(0,0) + B.coeff(1,1);
coeffMatrix.coeffRef(2,2) = A.coeff(1,1) + B.coeff(0,0);
coeffMatrix.coeffRef(3,3) = A.coeff(1,1) + B.coeff(1,1);
coeffMatrix.coeffRef(0,1) = B.coeff(1,0);
coeffMatrix.coeffRef(0,2) = A.coeff(0,1);
coeffMatrix.coeffRef(1,0) = B.coeff(0,1);
coeffMatrix.coeffRef(1,3) = A.coeff(0,1);
coeffMatrix.coeffRef(2,0) = A.coeff(1,0);
coeffMatrix.coeffRef(2,3) = B.coeff(1,0);
coeffMatrix.coeffRef(3,1) = A.coeff(1,0);
coeffMatrix.coeffRef(3,2) = B.coeff(0,1);
Matrix<Scalar,4,1> rhs;
rhs.coeffRef(0) = C.coeff(0,0);
rhs.coeffRef(1) = C.coeff(0,1);
rhs.coeffRef(2) = C.coeff(1,0);
rhs.coeffRef(3) = C.coeff(1,1);
Matrix<Scalar,4,1> result;
result = coeffMatrix.fullPivLu().solve(rhs);
X.coeffRef(0,0) = result.coeff(0);
X.coeffRef(0,1) = result.coeff(1);
X.coeffRef(1,0) = result.coeff(2);
X.coeffRef(1,1) = result.coeff(3);
}
// similar to compute1x1offDiagonalBlock()
template <typename MatrixType, typename ResultType>
void matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
{
typedef typename traits<MatrixType>::Scalar Scalar;
Matrix<Scalar,2,2> A = sqrtT.template block<2,2>(i,i);
Matrix<Scalar,2,2> B = sqrtT.template block<2,2>(j,j);
Matrix<Scalar,2,2> C = T.template block<2,2>(i,j);
if (j-i > 2)
C -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 2);
Matrix<Scalar,2,2> X;
matrix_sqrt_quasi_triangular_solve_auxiliary_equation(X, A, B, C);
sqrtT.template block<2,2>(i,j) = X;
}
// pre: T is quasi-upper-triangular and sqrtT is a zero matrix of the same size
// post: the diagonal blocks of sqrtT are the square roots of the diagonal blocks of T
template <typename MatrixType, typename ResultType>
void matrix_sqrt_quasi_triangular_diagonal(const MatrixType& T, ResultType& sqrtT)
{
using std::sqrt;
const Index size = T.rows();
for (Index i = 0; i < size; i++) {
if (i == size - 1 || T.coeff(i+1, i) == 0) {
eigen_assert(T(i,i) >= 0);
sqrtT.coeffRef(i,i) = sqrt(T.coeff(i,i));
}
else {
matrix_sqrt_quasi_triangular_2x2_diagonal_block(T, i, sqrtT);
++i;
}
}
}
// pre: T is quasi-upper-triangular and diagonal blocks of sqrtT are square root of diagonal blocks of T.
// post: sqrtT is the square root of T.
template <typename MatrixType, typename ResultType>
void matrix_sqrt_quasi_triangular_off_diagonal(const MatrixType& T, ResultType& sqrtT)
{
const Index size = T.rows();
for (Index j = 1; j < size; j++) {
if (T.coeff(j, j-1) != 0) // if T(j-1:j, j-1:j) is a 2-by-2 block
continue;
for (Index i = j-1; i >= 0; i--) {
if (i > 0 && T.coeff(i, i-1) != 0) // if T(i-1:i, i-1:i) is a 2-by-2 block
continue;
bool iBlockIs2x2 = (i < size - 1) && (T.coeff(i+1, i) != 0);
bool jBlockIs2x2 = (j < size - 1) && (T.coeff(j+1, j) != 0);
if (iBlockIs2x2 && jBlockIs2x2)
matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(T, i, j, sqrtT);
else if (iBlockIs2x2 && !jBlockIs2x2)
matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(T, i, j, sqrtT);
else if (!iBlockIs2x2 && jBlockIs2x2)
matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(T, i, j, sqrtT);
else if (!iBlockIs2x2 && !jBlockIs2x2)
matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(T, i, j, sqrtT);
}
}
}
} // end of namespace internal
/** \ingroup MatrixFunctions_Module
* \brief Compute matrix square root of quasi-triangular matrix.
*
* \tparam MatrixType type of \p arg, the argument of matrix square root,
* expected to be an instantiation of the Matrix class template.
* \tparam ResultType type of \p result, where result is to be stored.
* \param[in] arg argument of matrix square root.
* \param[out] result matrix square root of upper Hessenberg part of \p arg.
*
* This function computes the square root of the upper quasi-triangular matrix stored in the upper
* Hessenberg part of \p arg. Only the upper Hessenberg part of \p result is updated, the rest is
* not touched. See MatrixBase::sqrt() for details on how this computation is implemented.
*
* \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular
*/
template <typename MatrixType, typename ResultType>
void matrix_sqrt_quasi_triangular(const MatrixType &arg, ResultType &result)
{
eigen_assert(arg.rows() == arg.cols());
result.resize(arg.rows(), arg.cols());
internal::matrix_sqrt_quasi_triangular_diagonal(arg, result);
internal::matrix_sqrt_quasi_triangular_off_diagonal(arg, result);
}
/** \ingroup MatrixFunctions_Module
* \brief Compute matrix square root of triangular matrix.
*
* \tparam MatrixType type of \p arg, the argument of matrix square root,
* expected to be an instantiation of the Matrix class template.
* \tparam ResultType type of \p result, where result is to be stored.
* \param[in] arg argument of matrix square root.
* \param[out] result matrix square root of upper triangular part of \p arg.
*
* Only the upper triangular part (including the diagonal) of \p result is updated, the rest is not
* touched. See MatrixBase::sqrt() for details on how this computation is implemented.
*
* \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular
*/
template <typename MatrixType, typename ResultType>
void matrix_sqrt_triangular(const MatrixType &arg, ResultType &result)
{
using std::sqrt;
typedef typename MatrixType::Scalar Scalar;
eigen_assert(arg.rows() == arg.cols());
// Compute square root of arg and store it in upper triangular part of result
// This uses that the square root of triangular matrices can be computed directly.
result.resize(arg.rows(), arg.cols());
for (Index i = 0; i < arg.rows(); i++) {
result.coeffRef(i,i) = sqrt(arg.coeff(i,i));
}
for (Index j = 1; j < arg.cols(); j++) {
for (Index i = j-1; i >= 0; i--) {
// if i = j-1, then segment has length 0 so tmp = 0
Scalar tmp = (result.row(i).segment(i+1,j-i-1) * result.col(j).segment(i+1,j-i-1)).value();
// denominator may be zero if original matrix is singular
result.coeffRef(i,j) = (arg.coeff(i,j) - tmp) / (result.coeff(i,i) + result.coeff(j,j));
}
}
}
namespace internal {
/** \ingroup MatrixFunctions_Module
* \brief Helper struct for computing matrix square roots of general matrices.
* \tparam MatrixType type of the argument of the matrix square root,
* expected to be an instantiation of the Matrix class template.
*
* \sa MatrixSquareRootTriangular, MatrixSquareRootQuasiTriangular, MatrixBase::sqrt()
*/
template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
struct matrix_sqrt_compute
{
/** \brief Compute the matrix square root
*
* \param[in] arg matrix whose square root is to be computed.
* \param[out] result square root of \p arg.
*
* See MatrixBase::sqrt() for details on how this computation is implemented.
*/
template <typename ResultType> static void run(const MatrixType &arg, ResultType &result);
};
// ********** Partial specialization for real matrices **********
template <typename MatrixType>
struct matrix_sqrt_compute<MatrixType, 0>
{
template <typename ResultType>
static void run(const MatrixType &arg, ResultType &result)
{
eigen_assert(arg.rows() == arg.cols());
// Compute Schur decomposition of arg
const RealSchur<MatrixType> schurOfA(arg);
const MatrixType& T = schurOfA.matrixT();
const MatrixType& U = schurOfA.matrixU();
// Compute square root of T
MatrixType sqrtT = MatrixType::Zero(arg.rows(), arg.cols());
matrix_sqrt_quasi_triangular(T, sqrtT);
// Compute square root of arg
result = U * sqrtT * U.adjoint();
}
};
// ********** Partial specialization for complex matrices **********
template <typename MatrixType>
struct matrix_sqrt_compute<MatrixType, 1>
{
template <typename ResultType>
static void run(const MatrixType &arg, ResultType &result)
{
eigen_assert(arg.rows() == arg.cols());
// Compute Schur decomposition of arg
const ComplexSchur<MatrixType> schurOfA(arg);
const MatrixType& T = schurOfA.matrixT();
const MatrixType& U = schurOfA.matrixU();
// Compute square root of T
MatrixType sqrtT;
matrix_sqrt_triangular(T, sqrtT);
// Compute square root of arg
result = U * (sqrtT.template triangularView<Upper>() * U.adjoint());
}
};
} // end namespace internal
/** \ingroup MatrixFunctions_Module
*
* \brief Proxy for the matrix square root of some matrix (expression).
*
* \tparam Derived Type of the argument to the matrix square root.
*
* This class holds the argument to the matrix square root until it
* is assigned or evaluated for some other reason (so the argument
* should not be changed in the meantime). It is the return type of
* MatrixBase::sqrt() and most of the time this is the only way it is
* used.
*/
template<typename Derived> class MatrixSquareRootReturnValue
: public ReturnByValue<MatrixSquareRootReturnValue<Derived> >
{
protected:
typedef typename internal::ref_selector<Derived>::type DerivedNested;
public:
/** \brief Constructor.
*
* \param[in] src %Matrix (expression) forming the argument of the
* matrix square root.
*/
explicit MatrixSquareRootReturnValue(const Derived& src) : m_src(src) { }
/** \brief Compute the matrix square root.
*
* \param[out] result the matrix square root of \p src in the
* constructor.
*/
template <typename ResultType>
inline void evalTo(ResultType& result) const
{
typedef typename internal::nested_eval<Derived, 10>::type DerivedEvalType;
typedef typename internal::remove_all<DerivedEvalType>::type DerivedEvalTypeClean;
DerivedEvalType tmp(m_src);
internal::matrix_sqrt_compute<DerivedEvalTypeClean>::run(tmp, result);
}
Index rows() const { return m_src.rows(); }
Index cols() const { return m_src.cols(); }
protected:
const DerivedNested m_src;
};
namespace internal {
template<typename Derived>
struct traits<MatrixSquareRootReturnValue<Derived> >
{
typedef typename Derived::PlainObject ReturnType;
};
}
template <typename Derived>
const MatrixSquareRootReturnValue<Derived> MatrixBase<Derived>::sqrt() const
{
eigen_assert(rows() == cols());
return MatrixSquareRootReturnValue<Derived>(derived());
}
} // end namespace Eigen
#endif // EIGEN_MATRIX_FUNCTION

View File

@@ -0,0 +1,117 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_STEM_FUNCTION
#define EIGEN_STEM_FUNCTION
namespace Eigen {
namespace internal {
/** \brief The exponential function (and its derivatives). */
template <typename Scalar>
Scalar stem_function_exp(Scalar x, int)
{
using std::exp;
return exp(x);
}
/** \brief Cosine (and its derivatives). */
template <typename Scalar>
Scalar stem_function_cos(Scalar x, int n)
{
using std::cos;
using std::sin;
Scalar res;
switch (n % 4) {
case 0:
res = std::cos(x);
break;
case 1:
res = -std::sin(x);
break;
case 2:
res = -std::cos(x);
break;
case 3:
res = std::sin(x);
break;
}
return res;
}
/** \brief Sine (and its derivatives). */
template <typename Scalar>
Scalar stem_function_sin(Scalar x, int n)
{
using std::cos;
using std::sin;
Scalar res;
switch (n % 4) {
case 0:
res = std::sin(x);
break;
case 1:
res = std::cos(x);
break;
case 2:
res = -std::sin(x);
break;
case 3:
res = -std::cos(x);
break;
}
return res;
}
/** \brief Hyperbolic cosine (and its derivatives). */
template <typename Scalar>
Scalar stem_function_cosh(Scalar x, int n)
{
using std::cosh;
using std::sinh;
Scalar res;
switch (n % 2) {
case 0:
res = std::cosh(x);
break;
case 1:
res = std::sinh(x);
break;
}
return res;
}
/** \brief Hyperbolic sine (and its derivatives). */
template <typename Scalar>
Scalar stem_function_sinh(Scalar x, int n)
{
using std::cosh;
using std::sinh;
Scalar res;
switch (n % 2) {
case 0:
res = std::sinh(x);
break;
case 1:
res = std::cosh(x);
break;
}
return res;
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_STEM_FUNCTION