add Eigen as a dependency
This commit is contained in:
189
external/include/eigen3/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h
vendored
Normal file
189
external/include/eigen3/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h
vendored
Normal file
@@ -0,0 +1,189 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
|
||||
/* NOTE The functions of this file have been adapted from the GMM++ library */
|
||||
|
||||
//========================================================================
|
||||
//
|
||||
// Copyright (C) 2002-2007 Yves Renard
|
||||
//
|
||||
// This file is a part of GETFEM++
|
||||
//
|
||||
// Getfem++ is free software; you can redistribute it and/or modify
|
||||
// it under the terms of the GNU Lesser General Public License as
|
||||
// published by the Free Software Foundation; version 2.1 of the License.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU Lesser General Public License for more details.
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License along with this program; if not, write to the Free Software
|
||||
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301,
|
||||
// USA.
|
||||
//
|
||||
//========================================================================
|
||||
|
||||
#include "../../../../Eigen/src/Core/util/NonMPL2.h"
|
||||
|
||||
#ifndef EIGEN_CONSTRAINEDCG_H
|
||||
#define EIGEN_CONSTRAINEDCG_H
|
||||
|
||||
#include <Eigen/Core>
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
/** \ingroup IterativeSolvers_Module
|
||||
* Compute the pseudo inverse of the non-square matrix C such that
|
||||
* \f$ CINV = (C * C^T)^{-1} * C \f$ based on a conjugate gradient method.
|
||||
*
|
||||
* This function is internally used by constrained_cg.
|
||||
*/
|
||||
template <typename CMatrix, typename CINVMatrix>
|
||||
void pseudo_inverse(const CMatrix &C, CINVMatrix &CINV)
|
||||
{
|
||||
// optimisable : copie de la ligne, precalcul de C * trans(C).
|
||||
typedef typename CMatrix::Scalar Scalar;
|
||||
typedef typename CMatrix::Index Index;
|
||||
// FIXME use sparse vectors ?
|
||||
typedef Matrix<Scalar,Dynamic,1> TmpVec;
|
||||
|
||||
Index rows = C.rows(), cols = C.cols();
|
||||
|
||||
TmpVec d(rows), e(rows), l(cols), p(rows), q(rows), r(rows);
|
||||
Scalar rho, rho_1, alpha;
|
||||
d.setZero();
|
||||
|
||||
typedef Triplet<double> T;
|
||||
std::vector<T> tripletList;
|
||||
|
||||
for (Index i = 0; i < rows; ++i)
|
||||
{
|
||||
d[i] = 1.0;
|
||||
rho = 1.0;
|
||||
e.setZero();
|
||||
r = d;
|
||||
p = d;
|
||||
|
||||
while (rho >= 1e-38)
|
||||
{ /* conjugate gradient to compute e */
|
||||
/* which is the i-th row of inv(C * trans(C)) */
|
||||
l = C.transpose() * p;
|
||||
q = C * l;
|
||||
alpha = rho / p.dot(q);
|
||||
e += alpha * p;
|
||||
r += -alpha * q;
|
||||
rho_1 = rho;
|
||||
rho = r.dot(r);
|
||||
p = (rho/rho_1) * p + r;
|
||||
}
|
||||
|
||||
l = C.transpose() * e; // l is the i-th row of CINV
|
||||
// FIXME add a generic "prune/filter" expression for both dense and sparse object to sparse
|
||||
for (Index j=0; j<l.size(); ++j)
|
||||
if (l[j]<1e-15)
|
||||
tripletList.push_back(T(i,j,l(j)));
|
||||
|
||||
|
||||
d[i] = 0.0;
|
||||
}
|
||||
CINV.setFromTriplets(tripletList.begin(), tripletList.end());
|
||||
}
|
||||
|
||||
|
||||
|
||||
/** \ingroup IterativeSolvers_Module
|
||||
* Constrained conjugate gradient
|
||||
*
|
||||
* Computes the minimum of \f$ 1/2((Ax).x) - bx \f$ under the contraint \f$ Cx \le f \f$
|
||||
*/
|
||||
template<typename TMatrix, typename CMatrix,
|
||||
typename VectorX, typename VectorB, typename VectorF>
|
||||
void constrained_cg(const TMatrix& A, const CMatrix& C, VectorX& x,
|
||||
const VectorB& b, const VectorF& f, IterationController &iter)
|
||||
{
|
||||
using std::sqrt;
|
||||
typedef typename TMatrix::Scalar Scalar;
|
||||
typedef typename TMatrix::Index Index;
|
||||
typedef Matrix<Scalar,Dynamic,1> TmpVec;
|
||||
|
||||
Scalar rho = 1.0, rho_1, lambda, gamma;
|
||||
Index xSize = x.size();
|
||||
TmpVec p(xSize), q(xSize), q2(xSize),
|
||||
r(xSize), old_z(xSize), z(xSize),
|
||||
memox(xSize);
|
||||
std::vector<bool> satured(C.rows());
|
||||
p.setZero();
|
||||
iter.setRhsNorm(sqrt(b.dot(b))); // gael vect_sp(PS, b, b)
|
||||
if (iter.rhsNorm() == 0.0) iter.setRhsNorm(1.0);
|
||||
|
||||
SparseMatrix<Scalar,RowMajor> CINV(C.rows(), C.cols());
|
||||
pseudo_inverse(C, CINV);
|
||||
|
||||
while(true)
|
||||
{
|
||||
// computation of residual
|
||||
old_z = z;
|
||||
memox = x;
|
||||
r = b;
|
||||
r += A * -x;
|
||||
z = r;
|
||||
bool transition = false;
|
||||
for (Index i = 0; i < C.rows(); ++i)
|
||||
{
|
||||
Scalar al = C.row(i).dot(x) - f.coeff(i);
|
||||
if (al >= -1.0E-15)
|
||||
{
|
||||
if (!satured[i])
|
||||
{
|
||||
satured[i] = true;
|
||||
transition = true;
|
||||
}
|
||||
Scalar bb = CINV.row(i).dot(z);
|
||||
if (bb > 0.0)
|
||||
// FIXME: we should allow that: z += -bb * C.row(i);
|
||||
for (typename CMatrix::InnerIterator it(C,i); it; ++it)
|
||||
z.coeffRef(it.index()) -= bb*it.value();
|
||||
}
|
||||
else
|
||||
satured[i] = false;
|
||||
}
|
||||
|
||||
// descent direction
|
||||
rho_1 = rho;
|
||||
rho = r.dot(z);
|
||||
|
||||
if (iter.finished(rho)) break;
|
||||
|
||||
if (iter.noiseLevel() > 0 && transition) std::cerr << "CCG: transition\n";
|
||||
if (transition || iter.first()) gamma = 0.0;
|
||||
else gamma = (std::max)(0.0, (rho - old_z.dot(z)) / rho_1);
|
||||
p = z + gamma*p;
|
||||
|
||||
++iter;
|
||||
// one dimensionnal optimization
|
||||
q = A * p;
|
||||
lambda = rho / q.dot(p);
|
||||
for (Index i = 0; i < C.rows(); ++i)
|
||||
{
|
||||
if (!satured[i])
|
||||
{
|
||||
Scalar bb = C.row(i).dot(p) - f[i];
|
||||
if (bb > 0.0)
|
||||
lambda = (std::min)(lambda, (f.coeff(i)-C.row(i).dot(x)) / bb);
|
||||
}
|
||||
}
|
||||
x += lambda * p;
|
||||
memox -= x;
|
||||
}
|
||||
}
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_CONSTRAINEDCG_H
|
||||
Reference in New Issue
Block a user