add Eigen as a dependency
This commit is contained in:
108
external/include/eigen3/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h
vendored
Normal file
108
external/include/eigen3/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h
vendored
Normal file
@@ -0,0 +1,108 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_AUTODIFF_JACOBIAN_H
|
||||
#define EIGEN_AUTODIFF_JACOBIAN_H
|
||||
|
||||
namespace Eigen
|
||||
{
|
||||
|
||||
template<typename Functor> class AutoDiffJacobian : public Functor
|
||||
{
|
||||
public:
|
||||
AutoDiffJacobian() : Functor() {}
|
||||
AutoDiffJacobian(const Functor& f) : Functor(f) {}
|
||||
|
||||
// forward constructors
|
||||
#if EIGEN_HAS_VARIADIC_TEMPLATES
|
||||
template<typename... T>
|
||||
AutoDiffJacobian(const T& ...Values) : Functor(Values...) {}
|
||||
#else
|
||||
template<typename T0>
|
||||
AutoDiffJacobian(const T0& a0) : Functor(a0) {}
|
||||
template<typename T0, typename T1>
|
||||
AutoDiffJacobian(const T0& a0, const T1& a1) : Functor(a0, a1) {}
|
||||
template<typename T0, typename T1, typename T2>
|
||||
AutoDiffJacobian(const T0& a0, const T1& a1, const T2& a2) : Functor(a0, a1, a2) {}
|
||||
#endif
|
||||
|
||||
typedef typename Functor::InputType InputType;
|
||||
typedef typename Functor::ValueType ValueType;
|
||||
typedef typename ValueType::Scalar Scalar;
|
||||
|
||||
enum {
|
||||
InputsAtCompileTime = InputType::RowsAtCompileTime,
|
||||
ValuesAtCompileTime = ValueType::RowsAtCompileTime
|
||||
};
|
||||
|
||||
typedef Matrix<Scalar, ValuesAtCompileTime, InputsAtCompileTime> JacobianType;
|
||||
typedef typename JacobianType::Index Index;
|
||||
|
||||
typedef Matrix<Scalar, InputsAtCompileTime, 1> DerivativeType;
|
||||
typedef AutoDiffScalar<DerivativeType> ActiveScalar;
|
||||
|
||||
typedef Matrix<ActiveScalar, InputsAtCompileTime, 1> ActiveInput;
|
||||
typedef Matrix<ActiveScalar, ValuesAtCompileTime, 1> ActiveValue;
|
||||
|
||||
#if EIGEN_HAS_VARIADIC_TEMPLATES
|
||||
// Some compilers don't accept variadic parameters after a default parameter,
|
||||
// i.e., we can't just write _jac=0 but we need to overload operator():
|
||||
EIGEN_STRONG_INLINE
|
||||
void operator() (const InputType& x, ValueType* v) const
|
||||
{
|
||||
this->operator()(x, v, 0);
|
||||
}
|
||||
template<typename... ParamsType>
|
||||
void operator() (const InputType& x, ValueType* v, JacobianType* _jac,
|
||||
const ParamsType&... Params) const
|
||||
#else
|
||||
void operator() (const InputType& x, ValueType* v, JacobianType* _jac=0) const
|
||||
#endif
|
||||
{
|
||||
eigen_assert(v!=0);
|
||||
|
||||
if (!_jac)
|
||||
{
|
||||
#if EIGEN_HAS_VARIADIC_TEMPLATES
|
||||
Functor::operator()(x, v, Params...);
|
||||
#else
|
||||
Functor::operator()(x, v);
|
||||
#endif
|
||||
return;
|
||||
}
|
||||
|
||||
JacobianType& jac = *_jac;
|
||||
|
||||
ActiveInput ax = x.template cast<ActiveScalar>();
|
||||
ActiveValue av(jac.rows());
|
||||
|
||||
if(InputsAtCompileTime==Dynamic)
|
||||
for (Index j=0; j<jac.rows(); j++)
|
||||
av[j].derivatives().resize(x.rows());
|
||||
|
||||
for (Index i=0; i<jac.cols(); i++)
|
||||
ax[i].derivatives() = DerivativeType::Unit(x.rows(),i);
|
||||
|
||||
#if EIGEN_HAS_VARIADIC_TEMPLATES
|
||||
Functor::operator()(ax, &av, Params...);
|
||||
#else
|
||||
Functor::operator()(ax, &av);
|
||||
#endif
|
||||
|
||||
for (Index i=0; i<jac.rows(); i++)
|
||||
{
|
||||
(*v)[i] = av[i].value();
|
||||
jac.row(i) = av[i].derivatives();
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif // EIGEN_AUTODIFF_JACOBIAN_H
|
||||
694
external/include/eigen3/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h
vendored
Normal file
694
external/include/eigen3/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h
vendored
Normal file
@@ -0,0 +1,694 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_AUTODIFF_SCALAR_H
|
||||
#define EIGEN_AUTODIFF_SCALAR_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename A, typename B>
|
||||
struct make_coherent_impl {
|
||||
static void run(A&, B&) {}
|
||||
};
|
||||
|
||||
// resize a to match b is a.size()==0, and conversely.
|
||||
template<typename A, typename B>
|
||||
void make_coherent(const A& a, const B&b)
|
||||
{
|
||||
make_coherent_impl<A,B>::run(a.const_cast_derived(), b.const_cast_derived());
|
||||
}
|
||||
|
||||
template<typename _DerType, bool Enable> struct auto_diff_special_op;
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
template<typename _DerType> class AutoDiffScalar;
|
||||
|
||||
template<typename NewDerType>
|
||||
inline AutoDiffScalar<NewDerType> MakeAutoDiffScalar(const typename NewDerType::Scalar& value, const NewDerType &der) {
|
||||
return AutoDiffScalar<NewDerType>(value,der);
|
||||
}
|
||||
|
||||
/** \class AutoDiffScalar
|
||||
* \brief A scalar type replacement with automatic differentation capability
|
||||
*
|
||||
* \param _DerType the vector type used to store/represent the derivatives. The base scalar type
|
||||
* as well as the number of derivatives to compute are determined from this type.
|
||||
* Typical choices include, e.g., \c Vector4f for 4 derivatives, or \c VectorXf
|
||||
* if the number of derivatives is not known at compile time, and/or, the number
|
||||
* of derivatives is large.
|
||||
* Note that _DerType can also be a reference (e.g., \c VectorXf&) to wrap a
|
||||
* existing vector into an AutoDiffScalar.
|
||||
* Finally, _DerType can also be any Eigen compatible expression.
|
||||
*
|
||||
* This class represents a scalar value while tracking its respective derivatives using Eigen's expression
|
||||
* template mechanism.
|
||||
*
|
||||
* It supports the following list of global math function:
|
||||
* - std::abs, std::sqrt, std::pow, std::exp, std::log, std::sin, std::cos,
|
||||
* - internal::abs, internal::sqrt, numext::pow, internal::exp, internal::log, internal::sin, internal::cos,
|
||||
* - internal::conj, internal::real, internal::imag, numext::abs2.
|
||||
*
|
||||
* AutoDiffScalar can be used as the scalar type of an Eigen::Matrix object. However,
|
||||
* in that case, the expression template mechanism only occurs at the top Matrix level,
|
||||
* while derivatives are computed right away.
|
||||
*
|
||||
*/
|
||||
|
||||
template<typename _DerType>
|
||||
class AutoDiffScalar
|
||||
: public internal::auto_diff_special_op
|
||||
<_DerType, !internal::is_same<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar,
|
||||
typename NumTraits<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar>::Real>::value>
|
||||
{
|
||||
public:
|
||||
typedef internal::auto_diff_special_op
|
||||
<_DerType, !internal::is_same<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar,
|
||||
typename NumTraits<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar>::Real>::value> Base;
|
||||
typedef typename internal::remove_all<_DerType>::type DerType;
|
||||
typedef typename internal::traits<DerType>::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real Real;
|
||||
|
||||
using Base::operator+;
|
||||
using Base::operator*;
|
||||
|
||||
/** Default constructor without any initialization. */
|
||||
AutoDiffScalar() {}
|
||||
|
||||
/** Constructs an active scalar from its \a value,
|
||||
and initializes the \a nbDer derivatives such that it corresponds to the \a derNumber -th variable */
|
||||
AutoDiffScalar(const Scalar& value, int nbDer, int derNumber)
|
||||
: m_value(value), m_derivatives(DerType::Zero(nbDer))
|
||||
{
|
||||
m_derivatives.coeffRef(derNumber) = Scalar(1);
|
||||
}
|
||||
|
||||
/** Conversion from a scalar constant to an active scalar.
|
||||
* The derivatives are set to zero. */
|
||||
/*explicit*/ AutoDiffScalar(const Real& value)
|
||||
: m_value(value)
|
||||
{
|
||||
if(m_derivatives.size()>0)
|
||||
m_derivatives.setZero();
|
||||
}
|
||||
|
||||
/** Constructs an active scalar from its \a value and derivatives \a der */
|
||||
AutoDiffScalar(const Scalar& value, const DerType& der)
|
||||
: m_value(value), m_derivatives(der)
|
||||
{}
|
||||
|
||||
template<typename OtherDerType>
|
||||
AutoDiffScalar(const AutoDiffScalar<OtherDerType>& other
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
, typename internal::enable_if<
|
||||
internal::is_same<Scalar, typename internal::traits<typename internal::remove_all<OtherDerType>::type>::Scalar>::value
|
||||
&& internal::is_convertible<OtherDerType,DerType>::value , void*>::type = 0
|
||||
#endif
|
||||
)
|
||||
: m_value(other.value()), m_derivatives(other.derivatives())
|
||||
{}
|
||||
|
||||
friend std::ostream & operator << (std::ostream & s, const AutoDiffScalar& a)
|
||||
{
|
||||
return s << a.value();
|
||||
}
|
||||
|
||||
AutoDiffScalar(const AutoDiffScalar& other)
|
||||
: m_value(other.value()), m_derivatives(other.derivatives())
|
||||
{}
|
||||
|
||||
template<typename OtherDerType>
|
||||
inline AutoDiffScalar& operator=(const AutoDiffScalar<OtherDerType>& other)
|
||||
{
|
||||
m_value = other.value();
|
||||
m_derivatives = other.derivatives();
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline AutoDiffScalar& operator=(const AutoDiffScalar& other)
|
||||
{
|
||||
m_value = other.value();
|
||||
m_derivatives = other.derivatives();
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline AutoDiffScalar& operator=(const Scalar& other)
|
||||
{
|
||||
m_value = other;
|
||||
if(m_derivatives.size()>0)
|
||||
m_derivatives.setZero();
|
||||
return *this;
|
||||
}
|
||||
|
||||
// inline operator const Scalar& () const { return m_value; }
|
||||
// inline operator Scalar& () { return m_value; }
|
||||
|
||||
inline const Scalar& value() const { return m_value; }
|
||||
inline Scalar& value() { return m_value; }
|
||||
|
||||
inline const DerType& derivatives() const { return m_derivatives; }
|
||||
inline DerType& derivatives() { return m_derivatives; }
|
||||
|
||||
inline bool operator< (const Scalar& other) const { return m_value < other; }
|
||||
inline bool operator<=(const Scalar& other) const { return m_value <= other; }
|
||||
inline bool operator> (const Scalar& other) const { return m_value > other; }
|
||||
inline bool operator>=(const Scalar& other) const { return m_value >= other; }
|
||||
inline bool operator==(const Scalar& other) const { return m_value == other; }
|
||||
inline bool operator!=(const Scalar& other) const { return m_value != other; }
|
||||
|
||||
friend inline bool operator< (const Scalar& a, const AutoDiffScalar& b) { return a < b.value(); }
|
||||
friend inline bool operator<=(const Scalar& a, const AutoDiffScalar& b) { return a <= b.value(); }
|
||||
friend inline bool operator> (const Scalar& a, const AutoDiffScalar& b) { return a > b.value(); }
|
||||
friend inline bool operator>=(const Scalar& a, const AutoDiffScalar& b) { return a >= b.value(); }
|
||||
friend inline bool operator==(const Scalar& a, const AutoDiffScalar& b) { return a == b.value(); }
|
||||
friend inline bool operator!=(const Scalar& a, const AutoDiffScalar& b) { return a != b.value(); }
|
||||
|
||||
template<typename OtherDerType> inline bool operator< (const AutoDiffScalar<OtherDerType>& b) const { return m_value < b.value(); }
|
||||
template<typename OtherDerType> inline bool operator<=(const AutoDiffScalar<OtherDerType>& b) const { return m_value <= b.value(); }
|
||||
template<typename OtherDerType> inline bool operator> (const AutoDiffScalar<OtherDerType>& b) const { return m_value > b.value(); }
|
||||
template<typename OtherDerType> inline bool operator>=(const AutoDiffScalar<OtherDerType>& b) const { return m_value >= b.value(); }
|
||||
template<typename OtherDerType> inline bool operator==(const AutoDiffScalar<OtherDerType>& b) const { return m_value == b.value(); }
|
||||
template<typename OtherDerType> inline bool operator!=(const AutoDiffScalar<OtherDerType>& b) const { return m_value != b.value(); }
|
||||
|
||||
inline const AutoDiffScalar<DerType&> operator+(const Scalar& other) const
|
||||
{
|
||||
return AutoDiffScalar<DerType&>(m_value + other, m_derivatives);
|
||||
}
|
||||
|
||||
friend inline const AutoDiffScalar<DerType&> operator+(const Scalar& a, const AutoDiffScalar& b)
|
||||
{
|
||||
return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives());
|
||||
}
|
||||
|
||||
// inline const AutoDiffScalar<DerType&> operator+(const Real& other) const
|
||||
// {
|
||||
// return AutoDiffScalar<DerType&>(m_value + other, m_derivatives);
|
||||
// }
|
||||
|
||||
// friend inline const AutoDiffScalar<DerType&> operator+(const Real& a, const AutoDiffScalar& b)
|
||||
// {
|
||||
// return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives());
|
||||
// }
|
||||
|
||||
inline AutoDiffScalar& operator+=(const Scalar& other)
|
||||
{
|
||||
value() += other;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename OtherDerType>
|
||||
inline const AutoDiffScalar<CwiseBinaryOp<internal::scalar_sum_op<Scalar>,const DerType,const typename internal::remove_all<OtherDerType>::type> >
|
||||
operator+(const AutoDiffScalar<OtherDerType>& other) const
|
||||
{
|
||||
internal::make_coherent(m_derivatives, other.derivatives());
|
||||
return AutoDiffScalar<CwiseBinaryOp<internal::scalar_sum_op<Scalar>,const DerType,const typename internal::remove_all<OtherDerType>::type> >(
|
||||
m_value + other.value(),
|
||||
m_derivatives + other.derivatives());
|
||||
}
|
||||
|
||||
template<typename OtherDerType>
|
||||
inline AutoDiffScalar&
|
||||
operator+=(const AutoDiffScalar<OtherDerType>& other)
|
||||
{
|
||||
(*this) = (*this) + other;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline const AutoDiffScalar<DerType&> operator-(const Scalar& b) const
|
||||
{
|
||||
return AutoDiffScalar<DerType&>(m_value - b, m_derivatives);
|
||||
}
|
||||
|
||||
friend inline const AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> >
|
||||
operator-(const Scalar& a, const AutoDiffScalar& b)
|
||||
{
|
||||
return AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> >
|
||||
(a - b.value(), -b.derivatives());
|
||||
}
|
||||
|
||||
inline AutoDiffScalar& operator-=(const Scalar& other)
|
||||
{
|
||||
value() -= other;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename OtherDerType>
|
||||
inline const AutoDiffScalar<CwiseBinaryOp<internal::scalar_difference_op<Scalar>, const DerType,const typename internal::remove_all<OtherDerType>::type> >
|
||||
operator-(const AutoDiffScalar<OtherDerType>& other) const
|
||||
{
|
||||
internal::make_coherent(m_derivatives, other.derivatives());
|
||||
return AutoDiffScalar<CwiseBinaryOp<internal::scalar_difference_op<Scalar>, const DerType,const typename internal::remove_all<OtherDerType>::type> >(
|
||||
m_value - other.value(),
|
||||
m_derivatives - other.derivatives());
|
||||
}
|
||||
|
||||
template<typename OtherDerType>
|
||||
inline AutoDiffScalar&
|
||||
operator-=(const AutoDiffScalar<OtherDerType>& other)
|
||||
{
|
||||
*this = *this - other;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline const AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> >
|
||||
operator-() const
|
||||
{
|
||||
return AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> >(
|
||||
-m_value,
|
||||
-m_derivatives);
|
||||
}
|
||||
|
||||
inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) >
|
||||
operator*(const Scalar& other) const
|
||||
{
|
||||
return MakeAutoDiffScalar(m_value * other, m_derivatives * other);
|
||||
}
|
||||
|
||||
friend inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) >
|
||||
operator*(const Scalar& other, const AutoDiffScalar& a)
|
||||
{
|
||||
return MakeAutoDiffScalar(a.value() * other, a.derivatives() * other);
|
||||
}
|
||||
|
||||
// inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
|
||||
// operator*(const Real& other) const
|
||||
// {
|
||||
// return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >(
|
||||
// m_value * other,
|
||||
// (m_derivatives * other));
|
||||
// }
|
||||
//
|
||||
// friend inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
|
||||
// operator*(const Real& other, const AutoDiffScalar& a)
|
||||
// {
|
||||
// return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >(
|
||||
// a.value() * other,
|
||||
// a.derivatives() * other);
|
||||
// }
|
||||
|
||||
inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) >
|
||||
operator/(const Scalar& other) const
|
||||
{
|
||||
return MakeAutoDiffScalar(m_value / other, (m_derivatives * (Scalar(1)/other)));
|
||||
}
|
||||
|
||||
friend inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) >
|
||||
operator/(const Scalar& other, const AutoDiffScalar& a)
|
||||
{
|
||||
return MakeAutoDiffScalar(other / a.value(), a.derivatives() * (Scalar(-other) / (a.value()*a.value())));
|
||||
}
|
||||
|
||||
// inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
|
||||
// operator/(const Real& other) const
|
||||
// {
|
||||
// return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >(
|
||||
// m_value / other,
|
||||
// (m_derivatives * (Real(1)/other)));
|
||||
// }
|
||||
//
|
||||
// friend inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
|
||||
// operator/(const Real& other, const AutoDiffScalar& a)
|
||||
// {
|
||||
// return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >(
|
||||
// other / a.value(),
|
||||
// a.derivatives() * (-Real(1)/other));
|
||||
// }
|
||||
|
||||
template<typename OtherDerType>
|
||||
inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(
|
||||
CwiseBinaryOp<internal::scalar_difference_op<Scalar> EIGEN_COMMA
|
||||
const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) EIGEN_COMMA
|
||||
const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename internal::remove_all<OtherDerType>::type,Scalar,product) >,Scalar,product) >
|
||||
operator/(const AutoDiffScalar<OtherDerType>& other) const
|
||||
{
|
||||
internal::make_coherent(m_derivatives, other.derivatives());
|
||||
return MakeAutoDiffScalar(
|
||||
m_value / other.value(),
|
||||
((m_derivatives * other.value()) - (other.derivatives() * m_value))
|
||||
* (Scalar(1)/(other.value()*other.value())));
|
||||
}
|
||||
|
||||
template<typename OtherDerType>
|
||||
inline const AutoDiffScalar<CwiseBinaryOp<internal::scalar_sum_op<Scalar>,
|
||||
const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product),
|
||||
const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename internal::remove_all<OtherDerType>::type,Scalar,product) > >
|
||||
operator*(const AutoDiffScalar<OtherDerType>& other) const
|
||||
{
|
||||
internal::make_coherent(m_derivatives, other.derivatives());
|
||||
return MakeAutoDiffScalar(
|
||||
m_value * other.value(),
|
||||
(m_derivatives * other.value()) + (other.derivatives() * m_value));
|
||||
}
|
||||
|
||||
inline AutoDiffScalar& operator*=(const Scalar& other)
|
||||
{
|
||||
*this = *this * other;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename OtherDerType>
|
||||
inline AutoDiffScalar& operator*=(const AutoDiffScalar<OtherDerType>& other)
|
||||
{
|
||||
*this = *this * other;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline AutoDiffScalar& operator/=(const Scalar& other)
|
||||
{
|
||||
*this = *this / other;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename OtherDerType>
|
||||
inline AutoDiffScalar& operator/=(const AutoDiffScalar<OtherDerType>& other)
|
||||
{
|
||||
*this = *this / other;
|
||||
return *this;
|
||||
}
|
||||
|
||||
protected:
|
||||
Scalar m_value;
|
||||
DerType m_derivatives;
|
||||
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename _DerType>
|
||||
struct auto_diff_special_op<_DerType, true>
|
||||
// : auto_diff_scalar_op<_DerType, typename NumTraits<Scalar>::Real,
|
||||
// is_same<Scalar,typename NumTraits<Scalar>::Real>::value>
|
||||
{
|
||||
typedef typename remove_all<_DerType>::type DerType;
|
||||
typedef typename traits<DerType>::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real Real;
|
||||
|
||||
// typedef auto_diff_scalar_op<_DerType, typename NumTraits<Scalar>::Real,
|
||||
// is_same<Scalar,typename NumTraits<Scalar>::Real>::value> Base;
|
||||
|
||||
// using Base::operator+;
|
||||
// using Base::operator+=;
|
||||
// using Base::operator-;
|
||||
// using Base::operator-=;
|
||||
// using Base::operator*;
|
||||
// using Base::operator*=;
|
||||
|
||||
const AutoDiffScalar<_DerType>& derived() const { return *static_cast<const AutoDiffScalar<_DerType>*>(this); }
|
||||
AutoDiffScalar<_DerType>& derived() { return *static_cast<AutoDiffScalar<_DerType>*>(this); }
|
||||
|
||||
|
||||
inline const AutoDiffScalar<DerType&> operator+(const Real& other) const
|
||||
{
|
||||
return AutoDiffScalar<DerType&>(derived().value() + other, derived().derivatives());
|
||||
}
|
||||
|
||||
friend inline const AutoDiffScalar<DerType&> operator+(const Real& a, const AutoDiffScalar<_DerType>& b)
|
||||
{
|
||||
return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives());
|
||||
}
|
||||
|
||||
inline AutoDiffScalar<_DerType>& operator+=(const Real& other)
|
||||
{
|
||||
derived().value() += other;
|
||||
return derived();
|
||||
}
|
||||
|
||||
|
||||
inline const AutoDiffScalar<typename CwiseUnaryOp<bind2nd_op<scalar_product_op<Scalar,Real> >, DerType>::Type >
|
||||
operator*(const Real& other) const
|
||||
{
|
||||
return AutoDiffScalar<typename CwiseUnaryOp<bind2nd_op<scalar_product_op<Scalar,Real> >, DerType>::Type >(
|
||||
derived().value() * other,
|
||||
derived().derivatives() * other);
|
||||
}
|
||||
|
||||
friend inline const AutoDiffScalar<typename CwiseUnaryOp<bind1st_op<scalar_product_op<Real,Scalar> >, DerType>::Type >
|
||||
operator*(const Real& other, const AutoDiffScalar<_DerType>& a)
|
||||
{
|
||||
return AutoDiffScalar<typename CwiseUnaryOp<bind1st_op<scalar_product_op<Real,Scalar> >, DerType>::Type >(
|
||||
a.value() * other,
|
||||
a.derivatives() * other);
|
||||
}
|
||||
|
||||
inline AutoDiffScalar<_DerType>& operator*=(const Scalar& other)
|
||||
{
|
||||
*this = *this * other;
|
||||
return derived();
|
||||
}
|
||||
};
|
||||
|
||||
template<typename _DerType>
|
||||
struct auto_diff_special_op<_DerType, false>
|
||||
{
|
||||
void operator*() const;
|
||||
void operator-() const;
|
||||
void operator+() const;
|
||||
};
|
||||
|
||||
template<typename A_Scalar, int A_Rows, int A_Cols, int A_Options, int A_MaxRows, int A_MaxCols, typename B>
|
||||
struct make_coherent_impl<Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols>, B> {
|
||||
typedef Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols> A;
|
||||
static void run(A& a, B& b) {
|
||||
if((A_Rows==Dynamic || A_Cols==Dynamic) && (a.size()==0))
|
||||
{
|
||||
a.resize(b.size());
|
||||
a.setZero();
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename A, typename B_Scalar, int B_Rows, int B_Cols, int B_Options, int B_MaxRows, int B_MaxCols>
|
||||
struct make_coherent_impl<A, Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> > {
|
||||
typedef Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> B;
|
||||
static void run(A& a, B& b) {
|
||||
if((B_Rows==Dynamic || B_Cols==Dynamic) && (b.size()==0))
|
||||
{
|
||||
b.resize(a.size());
|
||||
b.setZero();
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename A_Scalar, int A_Rows, int A_Cols, int A_Options, int A_MaxRows, int A_MaxCols,
|
||||
typename B_Scalar, int B_Rows, int B_Cols, int B_Options, int B_MaxRows, int B_MaxCols>
|
||||
struct make_coherent_impl<Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols>,
|
||||
Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> > {
|
||||
typedef Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols> A;
|
||||
typedef Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> B;
|
||||
static void run(A& a, B& b) {
|
||||
if((A_Rows==Dynamic || A_Cols==Dynamic) && (a.size()==0))
|
||||
{
|
||||
a.resize(b.size());
|
||||
a.setZero();
|
||||
}
|
||||
else if((B_Rows==Dynamic || B_Cols==Dynamic) && (b.size()==0))
|
||||
{
|
||||
b.resize(a.size());
|
||||
b.setZero();
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
template<typename DerType, typename BinOp>
|
||||
struct ScalarBinaryOpTraits<AutoDiffScalar<DerType>,typename DerType::Scalar,BinOp>
|
||||
{
|
||||
typedef AutoDiffScalar<DerType> ReturnType;
|
||||
};
|
||||
|
||||
template<typename DerType, typename BinOp>
|
||||
struct ScalarBinaryOpTraits<typename DerType::Scalar,AutoDiffScalar<DerType>, BinOp>
|
||||
{
|
||||
typedef AutoDiffScalar<DerType> ReturnType;
|
||||
};
|
||||
|
||||
|
||||
// The following is an attempt to let Eigen's known about expression template, but that's more tricky!
|
||||
|
||||
// template<typename DerType, typename BinOp>
|
||||
// struct ScalarBinaryOpTraits<AutoDiffScalar<DerType>,AutoDiffScalar<DerType>, BinOp>
|
||||
// {
|
||||
// enum { Defined = 1 };
|
||||
// typedef AutoDiffScalar<typename DerType::PlainObject> ReturnType;
|
||||
// };
|
||||
//
|
||||
// template<typename DerType1,typename DerType2, typename BinOp>
|
||||
// struct ScalarBinaryOpTraits<AutoDiffScalar<DerType1>,AutoDiffScalar<DerType2>, BinOp>
|
||||
// {
|
||||
// enum { Defined = 1 };//internal::is_same<typename DerType1::Scalar,typename DerType2::Scalar>::value };
|
||||
// typedef AutoDiffScalar<typename DerType1::PlainObject> ReturnType;
|
||||
// };
|
||||
|
||||
#define EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(FUNC,CODE) \
|
||||
template<typename DerType> \
|
||||
inline const Eigen::AutoDiffScalar< \
|
||||
EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename Eigen::internal::remove_all<DerType>::type, typename Eigen::internal::traits<typename Eigen::internal::remove_all<DerType>::type>::Scalar, product) > \
|
||||
FUNC(const Eigen::AutoDiffScalar<DerType>& x) { \
|
||||
using namespace Eigen; \
|
||||
typedef typename Eigen::internal::traits<typename Eigen::internal::remove_all<DerType>::type>::Scalar Scalar; \
|
||||
EIGEN_UNUSED_VARIABLE(sizeof(Scalar)); \
|
||||
CODE; \
|
||||
}
|
||||
|
||||
template<typename DerType>
|
||||
inline const AutoDiffScalar<DerType>& conj(const AutoDiffScalar<DerType>& x) { return x; }
|
||||
template<typename DerType>
|
||||
inline const AutoDiffScalar<DerType>& real(const AutoDiffScalar<DerType>& x) { return x; }
|
||||
template<typename DerType>
|
||||
inline typename DerType::Scalar imag(const AutoDiffScalar<DerType>&) { return 0.; }
|
||||
template<typename DerType, typename T>
|
||||
inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (min)(const AutoDiffScalar<DerType>& x, const T& y) {
|
||||
typedef AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> ADS;
|
||||
return (x <= y ? ADS(x) : ADS(y));
|
||||
}
|
||||
template<typename DerType, typename T>
|
||||
inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (max)(const AutoDiffScalar<DerType>& x, const T& y) {
|
||||
typedef AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> ADS;
|
||||
return (x >= y ? ADS(x) : ADS(y));
|
||||
}
|
||||
template<typename DerType, typename T>
|
||||
inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (min)(const T& x, const AutoDiffScalar<DerType>& y) {
|
||||
typedef AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> ADS;
|
||||
return (x < y ? ADS(x) : ADS(y));
|
||||
}
|
||||
template<typename DerType, typename T>
|
||||
inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (max)(const T& x, const AutoDiffScalar<DerType>& y) {
|
||||
typedef AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> ADS;
|
||||
return (x > y ? ADS(x) : ADS(y));
|
||||
}
|
||||
template<typename DerType>
|
||||
inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (min)(const AutoDiffScalar<DerType>& x, const AutoDiffScalar<DerType>& y) {
|
||||
return (x.value() < y.value() ? x : y);
|
||||
}
|
||||
template<typename DerType>
|
||||
inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (max)(const AutoDiffScalar<DerType>& x, const AutoDiffScalar<DerType>& y) {
|
||||
return (x.value() >= y.value() ? x : y);
|
||||
}
|
||||
|
||||
|
||||
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs,
|
||||
using std::abs;
|
||||
return Eigen::MakeAutoDiffScalar(abs(x.value()), x.derivatives() * (x.value()<0 ? -1 : 1) );)
|
||||
|
||||
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs2,
|
||||
using numext::abs2;
|
||||
return Eigen::MakeAutoDiffScalar(abs2(x.value()), x.derivatives() * (Scalar(2)*x.value()));)
|
||||
|
||||
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sqrt,
|
||||
using std::sqrt;
|
||||
Scalar sqrtx = sqrt(x.value());
|
||||
return Eigen::MakeAutoDiffScalar(sqrtx,x.derivatives() * (Scalar(0.5) / sqrtx));)
|
||||
|
||||
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cos,
|
||||
using std::cos;
|
||||
using std::sin;
|
||||
return Eigen::MakeAutoDiffScalar(cos(x.value()), x.derivatives() * (-sin(x.value())));)
|
||||
|
||||
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sin,
|
||||
using std::sin;
|
||||
using std::cos;
|
||||
return Eigen::MakeAutoDiffScalar(sin(x.value()),x.derivatives() * cos(x.value()));)
|
||||
|
||||
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(exp,
|
||||
using std::exp;
|
||||
Scalar expx = exp(x.value());
|
||||
return Eigen::MakeAutoDiffScalar(expx,x.derivatives() * expx);)
|
||||
|
||||
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(log,
|
||||
using std::log;
|
||||
return Eigen::MakeAutoDiffScalar(log(x.value()),x.derivatives() * (Scalar(1)/x.value()));)
|
||||
|
||||
template<typename DerType>
|
||||
inline const Eigen::AutoDiffScalar<
|
||||
EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename internal::remove_all<DerType>::type,typename internal::traits<typename internal::remove_all<DerType>::type>::Scalar,product) >
|
||||
pow(const Eigen::AutoDiffScalar<DerType> &x, const typename internal::traits<typename internal::remove_all<DerType>::type>::Scalar &y)
|
||||
{
|
||||
using namespace Eigen;
|
||||
using std::pow;
|
||||
return Eigen::MakeAutoDiffScalar(pow(x.value(),y), x.derivatives() * (y * pow(x.value(),y-1)));
|
||||
}
|
||||
|
||||
|
||||
template<typename DerTypeA,typename DerTypeB>
|
||||
inline const AutoDiffScalar<Matrix<typename internal::traits<typename internal::remove_all<DerTypeA>::type>::Scalar,Dynamic,1> >
|
||||
atan2(const AutoDiffScalar<DerTypeA>& a, const AutoDiffScalar<DerTypeB>& b)
|
||||
{
|
||||
using std::atan2;
|
||||
typedef typename internal::traits<typename internal::remove_all<DerTypeA>::type>::Scalar Scalar;
|
||||
typedef AutoDiffScalar<Matrix<Scalar,Dynamic,1> > PlainADS;
|
||||
PlainADS ret;
|
||||
ret.value() = atan2(a.value(), b.value());
|
||||
|
||||
Scalar squared_hypot = a.value() * a.value() + b.value() * b.value();
|
||||
|
||||
// if (squared_hypot==0) the derivation is undefined and the following results in a NaN:
|
||||
ret.derivatives() = (a.derivatives() * b.value() - a.value() * b.derivatives()) / squared_hypot;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(tan,
|
||||
using std::tan;
|
||||
using std::cos;
|
||||
return Eigen::MakeAutoDiffScalar(tan(x.value()),x.derivatives() * (Scalar(1)/numext::abs2(cos(x.value()))));)
|
||||
|
||||
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(asin,
|
||||
using std::sqrt;
|
||||
using std::asin;
|
||||
return Eigen::MakeAutoDiffScalar(asin(x.value()),x.derivatives() * (Scalar(1)/sqrt(1-numext::abs2(x.value()))));)
|
||||
|
||||
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(acos,
|
||||
using std::sqrt;
|
||||
using std::acos;
|
||||
return Eigen::MakeAutoDiffScalar(acos(x.value()),x.derivatives() * (Scalar(-1)/sqrt(1-numext::abs2(x.value()))));)
|
||||
|
||||
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(tanh,
|
||||
using std::cosh;
|
||||
using std::tanh;
|
||||
return Eigen::MakeAutoDiffScalar(tanh(x.value()),x.derivatives() * (Scalar(1)/numext::abs2(cosh(x.value()))));)
|
||||
|
||||
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sinh,
|
||||
using std::sinh;
|
||||
using std::cosh;
|
||||
return Eigen::MakeAutoDiffScalar(sinh(x.value()),x.derivatives() * cosh(x.value()));)
|
||||
|
||||
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cosh,
|
||||
using std::sinh;
|
||||
using std::cosh;
|
||||
return Eigen::MakeAutoDiffScalar(cosh(x.value()),x.derivatives() * sinh(x.value()));)
|
||||
|
||||
#undef EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY
|
||||
|
||||
template<typename DerType> struct NumTraits<AutoDiffScalar<DerType> >
|
||||
: NumTraits< typename NumTraits<typename internal::remove_all<DerType>::type::Scalar>::Real >
|
||||
{
|
||||
typedef typename internal::remove_all<DerType>::type DerTypeCleaned;
|
||||
typedef AutoDiffScalar<Matrix<typename NumTraits<typename DerTypeCleaned::Scalar>::Real,DerTypeCleaned::RowsAtCompileTime,DerTypeCleaned::ColsAtCompileTime,
|
||||
0, DerTypeCleaned::MaxRowsAtCompileTime, DerTypeCleaned::MaxColsAtCompileTime> > Real;
|
||||
typedef AutoDiffScalar<DerType> NonInteger;
|
||||
typedef AutoDiffScalar<DerType> Nested;
|
||||
typedef typename NumTraits<typename DerTypeCleaned::Scalar>::Literal Literal;
|
||||
enum{
|
||||
RequireInitialization = 1
|
||||
};
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
namespace std {
|
||||
template <typename T>
|
||||
class numeric_limits<Eigen::AutoDiffScalar<T> >
|
||||
: public numeric_limits<typename T::Scalar> {};
|
||||
|
||||
} // namespace std
|
||||
|
||||
#endif // EIGEN_AUTODIFF_SCALAR_H
|
||||
220
external/include/eigen3/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h
vendored
Normal file
220
external/include/eigen3/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h
vendored
Normal file
@@ -0,0 +1,220 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_AUTODIFF_VECTOR_H
|
||||
#define EIGEN_AUTODIFF_VECTOR_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/* \class AutoDiffScalar
|
||||
* \brief A scalar type replacement with automatic differentation capability
|
||||
*
|
||||
* \param DerType the vector type used to store/represent the derivatives (e.g. Vector3f)
|
||||
*
|
||||
* This class represents a scalar value while tracking its respective derivatives.
|
||||
*
|
||||
* It supports the following list of global math function:
|
||||
* - std::abs, std::sqrt, std::pow, std::exp, std::log, std::sin, std::cos,
|
||||
* - internal::abs, internal::sqrt, numext::pow, internal::exp, internal::log, internal::sin, internal::cos,
|
||||
* - internal::conj, internal::real, internal::imag, numext::abs2.
|
||||
*
|
||||
* AutoDiffScalar can be used as the scalar type of an Eigen::Matrix object. However,
|
||||
* in that case, the expression template mechanism only occurs at the top Matrix level,
|
||||
* while derivatives are computed right away.
|
||||
*
|
||||
*/
|
||||
template<typename ValueType, typename JacobianType>
|
||||
class AutoDiffVector
|
||||
{
|
||||
public:
|
||||
//typedef typename internal::traits<ValueType>::Scalar Scalar;
|
||||
typedef typename internal::traits<ValueType>::Scalar BaseScalar;
|
||||
typedef AutoDiffScalar<Matrix<BaseScalar,JacobianType::RowsAtCompileTime,1> > ActiveScalar;
|
||||
typedef ActiveScalar Scalar;
|
||||
typedef AutoDiffScalar<typename JacobianType::ColXpr> CoeffType;
|
||||
typedef typename JacobianType::Index Index;
|
||||
|
||||
inline AutoDiffVector() {}
|
||||
|
||||
inline AutoDiffVector(const ValueType& values)
|
||||
: m_values(values)
|
||||
{
|
||||
m_jacobian.setZero();
|
||||
}
|
||||
|
||||
|
||||
CoeffType operator[] (Index i) { return CoeffType(m_values[i], m_jacobian.col(i)); }
|
||||
const CoeffType operator[] (Index i) const { return CoeffType(m_values[i], m_jacobian.col(i)); }
|
||||
|
||||
CoeffType operator() (Index i) { return CoeffType(m_values[i], m_jacobian.col(i)); }
|
||||
const CoeffType operator() (Index i) const { return CoeffType(m_values[i], m_jacobian.col(i)); }
|
||||
|
||||
CoeffType coeffRef(Index i) { return CoeffType(m_values[i], m_jacobian.col(i)); }
|
||||
const CoeffType coeffRef(Index i) const { return CoeffType(m_values[i], m_jacobian.col(i)); }
|
||||
|
||||
Index size() const { return m_values.size(); }
|
||||
|
||||
// FIXME here we could return an expression of the sum
|
||||
Scalar sum() const { /*std::cerr << "sum \n\n";*/ /*std::cerr << m_jacobian.rowwise().sum() << "\n\n";*/ return Scalar(m_values.sum(), m_jacobian.rowwise().sum()); }
|
||||
|
||||
|
||||
inline AutoDiffVector(const ValueType& values, const JacobianType& jac)
|
||||
: m_values(values), m_jacobian(jac)
|
||||
{}
|
||||
|
||||
template<typename OtherValueType, typename OtherJacobianType>
|
||||
inline AutoDiffVector(const AutoDiffVector<OtherValueType, OtherJacobianType>& other)
|
||||
: m_values(other.values()), m_jacobian(other.jacobian())
|
||||
{}
|
||||
|
||||
inline AutoDiffVector(const AutoDiffVector& other)
|
||||
: m_values(other.values()), m_jacobian(other.jacobian())
|
||||
{}
|
||||
|
||||
template<typename OtherValueType, typename OtherJacobianType>
|
||||
inline AutoDiffVector& operator=(const AutoDiffVector<OtherValueType, OtherJacobianType>& other)
|
||||
{
|
||||
m_values = other.values();
|
||||
m_jacobian = other.jacobian();
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline AutoDiffVector& operator=(const AutoDiffVector& other)
|
||||
{
|
||||
m_values = other.values();
|
||||
m_jacobian = other.jacobian();
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline const ValueType& values() const { return m_values; }
|
||||
inline ValueType& values() { return m_values; }
|
||||
|
||||
inline const JacobianType& jacobian() const { return m_jacobian; }
|
||||
inline JacobianType& jacobian() { return m_jacobian; }
|
||||
|
||||
template<typename OtherValueType,typename OtherJacobianType>
|
||||
inline const AutoDiffVector<
|
||||
typename MakeCwiseBinaryOp<internal::scalar_sum_op<BaseScalar>,ValueType,OtherValueType>::Type,
|
||||
typename MakeCwiseBinaryOp<internal::scalar_sum_op<BaseScalar>,JacobianType,OtherJacobianType>::Type >
|
||||
operator+(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) const
|
||||
{
|
||||
return AutoDiffVector<
|
||||
typename MakeCwiseBinaryOp<internal::scalar_sum_op<BaseScalar>,ValueType,OtherValueType>::Type,
|
||||
typename MakeCwiseBinaryOp<internal::scalar_sum_op<BaseScalar>,JacobianType,OtherJacobianType>::Type >(
|
||||
m_values + other.values(),
|
||||
m_jacobian + other.jacobian());
|
||||
}
|
||||
|
||||
template<typename OtherValueType, typename OtherJacobianType>
|
||||
inline AutoDiffVector&
|
||||
operator+=(const AutoDiffVector<OtherValueType,OtherJacobianType>& other)
|
||||
{
|
||||
m_values += other.values();
|
||||
m_jacobian += other.jacobian();
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename OtherValueType,typename OtherJacobianType>
|
||||
inline const AutoDiffVector<
|
||||
typename MakeCwiseBinaryOp<internal::scalar_difference_op<Scalar>,ValueType,OtherValueType>::Type,
|
||||
typename MakeCwiseBinaryOp<internal::scalar_difference_op<Scalar>,JacobianType,OtherJacobianType>::Type >
|
||||
operator-(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) const
|
||||
{
|
||||
return AutoDiffVector<
|
||||
typename MakeCwiseBinaryOp<internal::scalar_difference_op<Scalar>,ValueType,OtherValueType>::Type,
|
||||
typename MakeCwiseBinaryOp<internal::scalar_difference_op<Scalar>,JacobianType,OtherJacobianType>::Type >(
|
||||
m_values - other.values(),
|
||||
m_jacobian - other.jacobian());
|
||||
}
|
||||
|
||||
template<typename OtherValueType, typename OtherJacobianType>
|
||||
inline AutoDiffVector&
|
||||
operator-=(const AutoDiffVector<OtherValueType,OtherJacobianType>& other)
|
||||
{
|
||||
m_values -= other.values();
|
||||
m_jacobian -= other.jacobian();
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline const AutoDiffVector<
|
||||
typename MakeCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, ValueType>::Type,
|
||||
typename MakeCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, JacobianType>::Type >
|
||||
operator-() const
|
||||
{
|
||||
return AutoDiffVector<
|
||||
typename MakeCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, ValueType>::Type,
|
||||
typename MakeCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, JacobianType>::Type >(
|
||||
-m_values,
|
||||
-m_jacobian);
|
||||
}
|
||||
|
||||
inline const AutoDiffVector<
|
||||
typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, ValueType>::Type,
|
||||
typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>::Type>
|
||||
operator*(const BaseScalar& other) const
|
||||
{
|
||||
return AutoDiffVector<
|
||||
typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, ValueType>::Type,
|
||||
typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>::Type >(
|
||||
m_values * other,
|
||||
m_jacobian * other);
|
||||
}
|
||||
|
||||
friend inline const AutoDiffVector<
|
||||
typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, ValueType>::Type,
|
||||
typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>::Type >
|
||||
operator*(const Scalar& other, const AutoDiffVector& v)
|
||||
{
|
||||
return AutoDiffVector<
|
||||
typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, ValueType>::Type,
|
||||
typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>::Type >(
|
||||
v.values() * other,
|
||||
v.jacobian() * other);
|
||||
}
|
||||
|
||||
// template<typename OtherValueType,typename OtherJacobianType>
|
||||
// inline const AutoDiffVector<
|
||||
// CwiseBinaryOp<internal::scalar_multiple_op<Scalar>, ValueType, OtherValueType>
|
||||
// CwiseBinaryOp<internal::scalar_sum_op<Scalar>,
|
||||
// CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>,
|
||||
// CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, OtherJacobianType> > >
|
||||
// operator*(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) const
|
||||
// {
|
||||
// return AutoDiffVector<
|
||||
// CwiseBinaryOp<internal::scalar_multiple_op<Scalar>, ValueType, OtherValueType>
|
||||
// CwiseBinaryOp<internal::scalar_sum_op<Scalar>,
|
||||
// CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>,
|
||||
// CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, OtherJacobianType> > >(
|
||||
// m_values.cwise() * other.values(),
|
||||
// (m_jacobian * other.values()) + (m_values * other.jacobian()));
|
||||
// }
|
||||
|
||||
inline AutoDiffVector& operator*=(const Scalar& other)
|
||||
{
|
||||
m_values *= other;
|
||||
m_jacobian *= other;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename OtherValueType,typename OtherJacobianType>
|
||||
inline AutoDiffVector& operator*=(const AutoDiffVector<OtherValueType,OtherJacobianType>& other)
|
||||
{
|
||||
*this = *this * other;
|
||||
return *this;
|
||||
}
|
||||
|
||||
protected:
|
||||
ValueType m_values;
|
||||
JacobianType m_jacobian;
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif // EIGEN_AUTODIFF_VECTOR_H
|
||||
Reference in New Issue
Block a user