add Eigen as a dependency
This commit is contained in:
		
							
								
								
									
										138
									
								
								external/include/eigen3/unsupported/Eigen/Polynomials
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										138
									
								
								external/include/eigen3/unsupported/Eigen/Polynomials
									
									
									
									
										vendored
									
									
										Normal file
									
								
							| @@ -0,0 +1,138 @@ | ||||
| // This file is part of Eigen, a lightweight C++ template library | ||||
| // for linear algebra. | ||||
| // | ||||
| // | ||||
| // This Source Code Form is subject to the terms of the Mozilla | ||||
| // Public License v. 2.0. If a copy of the MPL was not distributed | ||||
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | ||||
|  | ||||
| #ifndef EIGEN_POLYNOMIALS_MODULE_H | ||||
| #define EIGEN_POLYNOMIALS_MODULE_H | ||||
|  | ||||
| #include <Eigen/Core> | ||||
|  | ||||
| #include <Eigen/src/Core/util/DisableStupidWarnings.h> | ||||
|  | ||||
| #include <Eigen/Eigenvalues> | ||||
|  | ||||
| // Note that EIGEN_HIDE_HEAVY_CODE has to be defined per module | ||||
| #if (defined EIGEN_EXTERN_INSTANTIATIONS) && (EIGEN_EXTERN_INSTANTIATIONS>=2) | ||||
|   #ifndef EIGEN_HIDE_HEAVY_CODE | ||||
|   #define EIGEN_HIDE_HEAVY_CODE | ||||
|   #endif | ||||
| #elif defined EIGEN_HIDE_HEAVY_CODE | ||||
|   #undef EIGEN_HIDE_HEAVY_CODE | ||||
| #endif | ||||
|  | ||||
| /** | ||||
|   * \defgroup Polynomials_Module Polynomials module | ||||
|   * \brief This module provides a QR based polynomial solver. | ||||
| 	* | ||||
|   * To use this module, add | ||||
|   * \code | ||||
|   * #include <unsupported/Eigen/Polynomials> | ||||
|   * \endcode | ||||
| 	* at the start of your source file. | ||||
|   */ | ||||
|  | ||||
| #include "src/Polynomials/PolynomialUtils.h" | ||||
| #include "src/Polynomials/Companion.h" | ||||
| #include "src/Polynomials/PolynomialSolver.h" | ||||
|  | ||||
| /** | ||||
| 	\page polynomials Polynomials defines functions for dealing with polynomials | ||||
| 	and a QR based polynomial solver. | ||||
| 	\ingroup Polynomials_Module | ||||
|  | ||||
| 	The remainder of the page documents first the functions for evaluating, computing | ||||
| 	polynomials, computing estimates about polynomials and next the QR based polynomial | ||||
| 	solver. | ||||
|  | ||||
| 	\section polynomialUtils convenient functions to deal with polynomials | ||||
| 	\subsection roots_to_monicPolynomial | ||||
| 	The function | ||||
| 	\code | ||||
| 	void roots_to_monicPolynomial( const RootVector& rv, Polynomial& poly ) | ||||
| 	\endcode | ||||
| 	computes the coefficients \f$ a_i \f$ of | ||||
|  | ||||
| 	\f$ p(x) = a_0 + a_{1}x + ... + a_{n-1}x^{n-1} + x^n \f$ | ||||
|  | ||||
| 	where \f$ p \f$ is known through its roots i.e. \f$ p(x) = (x-r_1)(x-r_2)...(x-r_n) \f$. | ||||
|  | ||||
| 	\subsection poly_eval | ||||
| 	The function | ||||
| 	\code | ||||
| 	T poly_eval( const Polynomials& poly, const T& x ) | ||||
| 	\endcode | ||||
| 	evaluates a polynomial at a given point using stabilized Hörner method. | ||||
|  | ||||
| 	The following code: first computes the coefficients in the monomial basis of the monic polynomial that has the provided roots; | ||||
| 	then, it evaluates the computed polynomial, using a stabilized Hörner method. | ||||
|  | ||||
| 	\include PolynomialUtils1.cpp | ||||
|   Output: \verbinclude PolynomialUtils1.out | ||||
|  | ||||
| 	\subsection Cauchy bounds | ||||
| 	The function | ||||
| 	\code | ||||
| 	Real cauchy_max_bound( const Polynomial& poly ) | ||||
| 	\endcode | ||||
| 	provides a maximum bound (the Cauchy one: \f$C(p)\f$) for the absolute value of a root of the given polynomial i.e. | ||||
| 	\f$ \forall r_i \f$ root of \f$ p(x) = \sum_{k=0}^d a_k x^k \f$, | ||||
| 	\f$ |r_i| \le C(p) = \sum_{k=0}^{d} \left | \frac{a_k}{a_d} \right | \f$ | ||||
| 	The leading coefficient \f$ p \f$: should be non zero \f$a_d \neq 0\f$. | ||||
|  | ||||
|  | ||||
| 	The function | ||||
| 	\code | ||||
| 	Real cauchy_min_bound( const Polynomial& poly ) | ||||
| 	\endcode | ||||
| 	provides a minimum bound (the Cauchy one: \f$c(p)\f$) for the absolute value of a non zero root of the given polynomial i.e. | ||||
| 	\f$ \forall r_i \neq 0 \f$ root of \f$ p(x) = \sum_{k=0}^d a_k x^k \f$, | ||||
| 	\f$ |r_i| \ge c(p) = \left( \sum_{k=0}^{d} \left | \frac{a_k}{a_0} \right | \right)^{-1} \f$ | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| 	\section QR polynomial solver class | ||||
| 	Computes the complex roots of a polynomial by computing the eigenvalues of the associated companion matrix with the QR algorithm. | ||||
| 	 | ||||
| 	The roots of \f$ p(x) = a_0 + a_1 x + a_2 x^2 + a_{3} x^3 + x^4 \f$ are the eigenvalues of | ||||
| 	\f$ | ||||
| 	\left [ | ||||
| 	\begin{array}{cccc} | ||||
| 	0 & 0 &  0 & a_0 \\ | ||||
| 	1 & 0 &  0 & a_1 \\ | ||||
| 	0 & 1 &  0 & a_2 \\ | ||||
| 	0 & 0 &  1 & a_3 | ||||
| 	\end{array} \right ] | ||||
| 	\f$ | ||||
|  | ||||
| 	However, the QR algorithm is not guaranteed to converge when there are several eigenvalues with same modulus. | ||||
|  | ||||
| 	Therefore the current polynomial solver is guaranteed to provide a correct result only when the complex roots \f$r_1,r_2,...,r_d\f$ have distinct moduli i.e. | ||||
| 	 | ||||
| 	\f$ \forall i,j \in [1;d],~ \| r_i \| \neq \| r_j \| \f$. | ||||
|  | ||||
| 	With 32bit (float) floating types this problem shows up frequently. | ||||
|   However, almost always, correct accuracy is reached even in these cases for 64bit | ||||
|   (double) floating types and small polynomial degree (<20). | ||||
|  | ||||
| 	\include PolynomialSolver1.cpp | ||||
| 	 | ||||
| 	In the above example: | ||||
| 	 | ||||
| 	-# a simple use of the polynomial solver is shown; | ||||
| 	-# the accuracy problem with the QR algorithm is presented: a polynomial with almost conjugate roots is provided to the solver. | ||||
| 	Those roots have almost same module therefore the QR algorithm failed to converge: the accuracy | ||||
| 	of the last root is bad; | ||||
| 	-# a simple way to circumvent the problem is shown: use doubles instead of floats. | ||||
|  | ||||
|   Output: \verbinclude PolynomialSolver1.out | ||||
| */ | ||||
|  | ||||
| #include <Eigen/src/Core/util/ReenableStupidWarnings.h> | ||||
|  | ||||
| #endif // EIGEN_POLYNOMIALS_MODULE_H | ||||
| /* vim: set filetype=cpp et sw=2 ts=2 ai: */ | ||||
		Reference in New Issue
	
	Block a user