add Eigen as a dependency
This commit is contained in:
		
							
								
								
									
										419
									
								
								external/include/eigen3/unsupported/Eigen/FFT
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										419
									
								
								external/include/eigen3/unsupported/Eigen/FFT
									
									
									
									
										vendored
									
									
										Normal file
									
								
							| @@ -0,0 +1,419 @@ | ||||
| // This file is part of Eigen, a lightweight C++ template library | ||||
| // for linear algebra.  | ||||
| // | ||||
| // Copyright (C) 2009 Mark Borgerding mark a borgerding net | ||||
| // | ||||
| // This Source Code Form is subject to the terms of the Mozilla | ||||
| // Public License v. 2.0. If a copy of the MPL was not distributed | ||||
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | ||||
|  | ||||
| #ifndef EIGEN_FFT_H | ||||
| #define EIGEN_FFT_H | ||||
|  | ||||
| #include <complex> | ||||
| #include <vector> | ||||
| #include <map> | ||||
| #include <Eigen/Core> | ||||
|  | ||||
|  | ||||
| /** | ||||
|   * \defgroup FFT_Module Fast Fourier Transform module | ||||
|   * | ||||
|   * \code | ||||
|   * #include <unsupported/Eigen/FFT> | ||||
|   * \endcode | ||||
|   * | ||||
|   * This module provides Fast Fourier transformation, with a configurable backend | ||||
|   * implementation. | ||||
|   * | ||||
|   * The default implementation is based on kissfft. It is a small, free, and | ||||
|   * reasonably efficient default. | ||||
|   * | ||||
|   * There are currently two implementation backend: | ||||
|   * | ||||
|   * - fftw (http://www.fftw.org) : faster, GPL -- incompatible with Eigen in LGPL form, bigger code size. | ||||
|   * - MKL (http://en.wikipedia.org/wiki/Math_Kernel_Library) : fastest, commercial -- may be incompatible with Eigen in GPL form. | ||||
|   * | ||||
|   * \section FFTDesign Design | ||||
|   * | ||||
|   * The following design decisions were made concerning scaling and | ||||
|   * half-spectrum for real FFT. | ||||
|   * | ||||
|   * The intent is to facilitate generic programming and ease migrating code | ||||
|   * from  Matlab/octave. | ||||
|   * We think the default behavior of Eigen/FFT should favor correctness and | ||||
|   * generality over speed. Of course, the caller should be able to "opt-out" from this | ||||
|   * behavior and get the speed increase if they want it. | ||||
|   * | ||||
|   * 1) %Scaling: | ||||
|   * Other libraries (FFTW,IMKL,KISSFFT)  do not perform scaling, so there | ||||
|   * is a constant gain incurred after the forward&inverse transforms , so  | ||||
|   * IFFT(FFT(x)) = Kx;  this is done to avoid a vector-by-value multiply.   | ||||
|   * The downside is that algorithms that worked correctly in Matlab/octave  | ||||
|   * don't behave the same way once implemented in C++. | ||||
|   * | ||||
|   * How Eigen/FFT differs: invertible scaling is performed so IFFT( FFT(x) ) = x.  | ||||
|   * | ||||
|   * 2) Real FFT half-spectrum | ||||
|   * Other libraries use only half the frequency spectrum (plus one extra  | ||||
|   * sample for the Nyquist bin) for a real FFT, the other half is the  | ||||
|   * conjugate-symmetric of the first half.  This saves them a copy and some  | ||||
|   * memory.  The downside is the caller needs to have special logic for the  | ||||
|   * number of bins in complex vs real. | ||||
|   * | ||||
|   * How Eigen/FFT differs: The full spectrum is returned from the forward  | ||||
|   * transform.  This facilitates generic template programming by obviating  | ||||
|   * separate specializations for real vs complex.  On the inverse | ||||
|   * transform, only half the spectrum is actually used if the output type is real. | ||||
|   */ | ||||
|   | ||||
|  | ||||
| #ifdef EIGEN_FFTW_DEFAULT | ||||
| // FFTW: faster, GPL -- incompatible with Eigen in LGPL form, bigger code size | ||||
| #  include <fftw3.h> | ||||
| #  include "src/FFT/ei_fftw_impl.h" | ||||
|    namespace Eigen { | ||||
|      //template <typename T> typedef struct internal::fftw_impl  default_fft_impl; this does not work | ||||
|      template <typename T> struct default_fft_impl : public internal::fftw_impl<T> {}; | ||||
|    } | ||||
| #elif defined EIGEN_MKL_DEFAULT | ||||
| // TODO  | ||||
| // intel Math Kernel Library: fastest, commercial -- may be incompatible with Eigen in GPL form | ||||
| #  include "src/FFT/ei_imklfft_impl.h" | ||||
|    namespace Eigen { | ||||
|      template <typename T> struct default_fft_impl : public internal::imklfft_impl {}; | ||||
|    } | ||||
| #else | ||||
| // internal::kissfft_impl:  small, free, reasonably efficient default, derived from kissfft | ||||
| // | ||||
| # include "src/FFT/ei_kissfft_impl.h" | ||||
|   namespace Eigen { | ||||
|      template <typename T>  | ||||
|        struct default_fft_impl : public internal::kissfft_impl<T> {}; | ||||
|   } | ||||
| #endif | ||||
|  | ||||
| namespace Eigen { | ||||
|  | ||||
|   | ||||
| //  | ||||
| template<typename T_SrcMat,typename T_FftIfc> struct fft_fwd_proxy; | ||||
| template<typename T_SrcMat,typename T_FftIfc> struct fft_inv_proxy; | ||||
|  | ||||
| namespace internal { | ||||
| template<typename T_SrcMat,typename T_FftIfc> | ||||
| struct traits< fft_fwd_proxy<T_SrcMat,T_FftIfc> > | ||||
| { | ||||
|   typedef typename T_SrcMat::PlainObject ReturnType; | ||||
| }; | ||||
| template<typename T_SrcMat,typename T_FftIfc> | ||||
| struct traits< fft_inv_proxy<T_SrcMat,T_FftIfc> > | ||||
| { | ||||
|   typedef typename T_SrcMat::PlainObject ReturnType; | ||||
| }; | ||||
| } | ||||
|  | ||||
| template<typename T_SrcMat,typename T_FftIfc>  | ||||
| struct fft_fwd_proxy | ||||
|  : public ReturnByValue<fft_fwd_proxy<T_SrcMat,T_FftIfc> > | ||||
| { | ||||
|   typedef DenseIndex Index; | ||||
|  | ||||
|   fft_fwd_proxy(const T_SrcMat& src,T_FftIfc & fft, Index nfft) : m_src(src),m_ifc(fft), m_nfft(nfft) {} | ||||
|  | ||||
|   template<typename T_DestMat> void evalTo(T_DestMat& dst) const; | ||||
|  | ||||
|   Index rows() const { return m_src.rows(); } | ||||
|   Index cols() const { return m_src.cols(); } | ||||
| protected: | ||||
|   const T_SrcMat & m_src; | ||||
|   T_FftIfc & m_ifc; | ||||
|   Index m_nfft; | ||||
| private: | ||||
|   fft_fwd_proxy& operator=(const fft_fwd_proxy&); | ||||
| }; | ||||
|  | ||||
| template<typename T_SrcMat,typename T_FftIfc>  | ||||
| struct fft_inv_proxy | ||||
|  : public ReturnByValue<fft_inv_proxy<T_SrcMat,T_FftIfc> > | ||||
| { | ||||
|   typedef DenseIndex Index; | ||||
|  | ||||
|   fft_inv_proxy(const T_SrcMat& src,T_FftIfc & fft, Index nfft) : m_src(src),m_ifc(fft), m_nfft(nfft) {} | ||||
|  | ||||
|   template<typename T_DestMat> void evalTo(T_DestMat& dst) const; | ||||
|  | ||||
|   Index rows() const { return m_src.rows(); } | ||||
|   Index cols() const { return m_src.cols(); } | ||||
| protected: | ||||
|   const T_SrcMat & m_src; | ||||
|   T_FftIfc & m_ifc; | ||||
|   Index m_nfft; | ||||
| private: | ||||
|   fft_inv_proxy& operator=(const fft_inv_proxy&); | ||||
| }; | ||||
|  | ||||
|  | ||||
| template <typename T_Scalar, | ||||
|          typename T_Impl=default_fft_impl<T_Scalar> > | ||||
| class FFT | ||||
| { | ||||
|   public: | ||||
|     typedef T_Impl impl_type; | ||||
|     typedef DenseIndex Index; | ||||
|     typedef typename impl_type::Scalar Scalar; | ||||
|     typedef typename impl_type::Complex Complex; | ||||
|  | ||||
|     enum Flag { | ||||
|       Default=0, // goof proof | ||||
|       Unscaled=1, | ||||
|       HalfSpectrum=2, | ||||
|       // SomeOtherSpeedOptimization=4 | ||||
|       Speedy=32767 | ||||
|     }; | ||||
|  | ||||
|     FFT( const impl_type & impl=impl_type() , Flag flags=Default ) :m_impl(impl),m_flag(flags) { } | ||||
|  | ||||
|     inline | ||||
|     bool HasFlag(Flag f) const { return (m_flag & (int)f) == f;} | ||||
|  | ||||
|     inline | ||||
|     void SetFlag(Flag f) { m_flag |= (int)f;} | ||||
|  | ||||
|     inline | ||||
|     void ClearFlag(Flag f) { m_flag &= (~(int)f);} | ||||
|  | ||||
|     inline | ||||
|     void fwd( Complex * dst, const Scalar * src, Index nfft) | ||||
|     { | ||||
|         m_impl.fwd(dst,src,static_cast<int>(nfft)); | ||||
|         if ( HasFlag(HalfSpectrum) == false) | ||||
|           ReflectSpectrum(dst,nfft); | ||||
|     } | ||||
|  | ||||
|     inline | ||||
|     void fwd( Complex * dst, const Complex * src, Index nfft) | ||||
|     { | ||||
|         m_impl.fwd(dst,src,static_cast<int>(nfft)); | ||||
|     } | ||||
|  | ||||
|     /* | ||||
|     inline  | ||||
|     void fwd2(Complex * dst, const Complex * src, int n0,int n1) | ||||
|     { | ||||
|       m_impl.fwd2(dst,src,n0,n1); | ||||
|     } | ||||
|     */ | ||||
|  | ||||
|     template <typename _Input> | ||||
|     inline | ||||
|     void fwd( std::vector<Complex> & dst, const std::vector<_Input> & src)  | ||||
|     { | ||||
|       if ( NumTraits<_Input>::IsComplex == 0 && HasFlag(HalfSpectrum) ) | ||||
|         dst.resize( (src.size()>>1)+1); // half the bins + Nyquist bin | ||||
|       else | ||||
|         dst.resize(src.size()); | ||||
|       fwd(&dst[0],&src[0],src.size()); | ||||
|     } | ||||
|  | ||||
|     template<typename InputDerived, typename ComplexDerived> | ||||
|     inline | ||||
|     void fwd( MatrixBase<ComplexDerived> & dst, const MatrixBase<InputDerived> & src, Index nfft=-1) | ||||
|     { | ||||
|       typedef typename ComplexDerived::Scalar dst_type; | ||||
|       typedef typename InputDerived::Scalar src_type; | ||||
|       EIGEN_STATIC_ASSERT_VECTOR_ONLY(InputDerived) | ||||
|       EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived) | ||||
|       EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,InputDerived) // size at compile-time | ||||
|       EIGEN_STATIC_ASSERT((internal::is_same<dst_type, Complex>::value), | ||||
|             YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) | ||||
|       EIGEN_STATIC_ASSERT(int(InputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit, | ||||
|             THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES) | ||||
|  | ||||
|       if (nfft<1) | ||||
|         nfft = src.size(); | ||||
|  | ||||
|       if ( NumTraits< src_type >::IsComplex == 0 && HasFlag(HalfSpectrum) ) | ||||
|         dst.derived().resize( (nfft>>1)+1); | ||||
|       else | ||||
|         dst.derived().resize(nfft); | ||||
|  | ||||
|       if ( src.innerStride() != 1 || src.size() < nfft ) { | ||||
|         Matrix<src_type,1,Dynamic> tmp; | ||||
|         if (src.size()<nfft) { | ||||
|           tmp.setZero(nfft); | ||||
|           tmp.block(0,0,src.size(),1 ) = src; | ||||
|         }else{ | ||||
|           tmp = src; | ||||
|         } | ||||
|         fwd( &dst[0],&tmp[0],nfft ); | ||||
|       }else{ | ||||
|         fwd( &dst[0],&src[0],nfft ); | ||||
|       } | ||||
|     } | ||||
|   | ||||
|     template<typename InputDerived> | ||||
|     inline | ||||
|     fft_fwd_proxy< MatrixBase<InputDerived>, FFT<T_Scalar,T_Impl> > | ||||
|     fwd( const MatrixBase<InputDerived> & src, Index nfft=-1) | ||||
|     { | ||||
|       return fft_fwd_proxy< MatrixBase<InputDerived> ,FFT<T_Scalar,T_Impl> >( src, *this,nfft ); | ||||
|     } | ||||
|  | ||||
|     template<typename InputDerived> | ||||
|     inline | ||||
|     fft_inv_proxy< MatrixBase<InputDerived>, FFT<T_Scalar,T_Impl> > | ||||
|     inv( const MatrixBase<InputDerived> & src, Index nfft=-1) | ||||
|     { | ||||
|       return  fft_inv_proxy< MatrixBase<InputDerived> ,FFT<T_Scalar,T_Impl> >( src, *this,nfft ); | ||||
|     } | ||||
|  | ||||
|     inline | ||||
|     void inv( Complex * dst, const Complex * src, Index nfft) | ||||
|     { | ||||
|       m_impl.inv( dst,src,static_cast<int>(nfft) ); | ||||
|       if ( HasFlag( Unscaled ) == false) | ||||
|         scale(dst,Scalar(1./nfft),nfft); // scale the time series | ||||
|     } | ||||
|  | ||||
|     inline | ||||
|     void inv( Scalar * dst, const Complex * src, Index nfft) | ||||
|     { | ||||
|       m_impl.inv( dst,src,static_cast<int>(nfft) ); | ||||
|       if ( HasFlag( Unscaled ) == false) | ||||
|         scale(dst,Scalar(1./nfft),nfft); // scale the time series | ||||
|     } | ||||
|  | ||||
|     template<typename OutputDerived, typename ComplexDerived> | ||||
|     inline | ||||
|     void inv( MatrixBase<OutputDerived> & dst, const MatrixBase<ComplexDerived> & src, Index nfft=-1) | ||||
|     { | ||||
|       typedef typename ComplexDerived::Scalar src_type; | ||||
|       typedef typename ComplexDerived::RealScalar real_type; | ||||
|       typedef typename OutputDerived::Scalar dst_type; | ||||
|       const bool realfft= (NumTraits<dst_type>::IsComplex == 0); | ||||
|       EIGEN_STATIC_ASSERT_VECTOR_ONLY(OutputDerived) | ||||
|       EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived) | ||||
|       EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,OutputDerived) // size at compile-time | ||||
|       EIGEN_STATIC_ASSERT((internal::is_same<src_type, Complex>::value), | ||||
|             YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) | ||||
|       EIGEN_STATIC_ASSERT(int(OutputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit, | ||||
|             THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES) | ||||
|  | ||||
|       if (nfft<1) { //automatic FFT size determination | ||||
|         if ( realfft && HasFlag(HalfSpectrum) )  | ||||
|           nfft = 2*(src.size()-1); //assume even fft size | ||||
|         else | ||||
|           nfft = src.size(); | ||||
|       } | ||||
|       dst.derived().resize( nfft ); | ||||
|  | ||||
|       // check for nfft that does not fit the input data size | ||||
|       Index resize_input= ( realfft && HasFlag(HalfSpectrum) ) | ||||
|         ? ( (nfft/2+1) - src.size() ) | ||||
|         : ( nfft - src.size() ); | ||||
|  | ||||
|       if ( src.innerStride() != 1 || resize_input ) { | ||||
|         // if the vector is strided, then we need to copy it to a packed temporary | ||||
|         Matrix<src_type,1,Dynamic> tmp; | ||||
|         if ( resize_input ) { | ||||
|           size_t ncopy = (std::min)(src.size(),src.size() + resize_input); | ||||
|           tmp.setZero(src.size() + resize_input); | ||||
|           if ( realfft && HasFlag(HalfSpectrum) ) { | ||||
|             // pad at the Nyquist bin | ||||
|             tmp.head(ncopy) = src.head(ncopy); | ||||
|             tmp(ncopy-1) = real(tmp(ncopy-1)); // enforce real-only Nyquist bin | ||||
|           }else{ | ||||
|             size_t nhead,ntail; | ||||
|             nhead = 1+ncopy/2-1; // range  [0:pi) | ||||
|             ntail = ncopy/2-1;   // range (-pi:0) | ||||
|             tmp.head(nhead) = src.head(nhead); | ||||
|             tmp.tail(ntail) = src.tail(ntail); | ||||
|             if (resize_input<0) { //shrinking -- create the Nyquist bin as the average of the two bins that fold into it | ||||
|               tmp(nhead) = ( src(nfft/2) + src( src.size() - nfft/2 ) )*real_type(.5); | ||||
|             }else{ // expanding -- split the old Nyquist bin into two halves | ||||
|               tmp(nhead) = src(nhead) * real_type(.5); | ||||
|               tmp(tmp.size()-nhead) = tmp(nhead); | ||||
|             } | ||||
|           } | ||||
|         }else{ | ||||
|           tmp = src; | ||||
|         } | ||||
|         inv( &dst[0],&tmp[0], nfft); | ||||
|       }else{ | ||||
|         inv( &dst[0],&src[0], nfft); | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     template <typename _Output> | ||||
|     inline | ||||
|     void inv( std::vector<_Output> & dst, const std::vector<Complex> & src,Index nfft=-1) | ||||
|     { | ||||
|       if (nfft<1) | ||||
|         nfft = ( NumTraits<_Output>::IsComplex == 0 && HasFlag(HalfSpectrum) ) ? 2*(src.size()-1) : src.size(); | ||||
|       dst.resize( nfft ); | ||||
|       inv( &dst[0],&src[0],nfft); | ||||
|     } | ||||
|  | ||||
|  | ||||
|     /* | ||||
|     // TODO: multi-dimensional FFTs | ||||
|     inline  | ||||
|     void inv2(Complex * dst, const Complex * src, int n0,int n1) | ||||
|     { | ||||
|       m_impl.inv2(dst,src,n0,n1); | ||||
|       if ( HasFlag( Unscaled ) == false) | ||||
|           scale(dst,1./(n0*n1),n0*n1); | ||||
|     } | ||||
|   */ | ||||
|  | ||||
|     inline | ||||
|     impl_type & impl() {return m_impl;} | ||||
|   private: | ||||
|  | ||||
|     template <typename T_Data> | ||||
|     inline | ||||
|     void scale(T_Data * x,Scalar s,Index nx) | ||||
|     { | ||||
| #if 1 | ||||
|       for (int k=0;k<nx;++k) | ||||
|         *x++ *= s; | ||||
| #else | ||||
|       if ( ((ptrdiff_t)x) & 15 ) | ||||
|         Matrix<T_Data, Dynamic, 1>::Map(x,nx) *= s; | ||||
|       else | ||||
|         Matrix<T_Data, Dynamic, 1>::MapAligned(x,nx) *= s; | ||||
|          //Matrix<T_Data, Dynamic, Dynamic>::Map(x,nx) * s; | ||||
| #endif   | ||||
|     } | ||||
|  | ||||
|     inline | ||||
|     void ReflectSpectrum(Complex * freq, Index nfft) | ||||
|     { | ||||
|       // create the implicit right-half spectrum (conjugate-mirror of the left-half) | ||||
|       Index nhbins=(nfft>>1)+1; | ||||
|       for (Index k=nhbins;k < nfft; ++k ) | ||||
|         freq[k] = conj(freq[nfft-k]); | ||||
|     } | ||||
|  | ||||
|     impl_type m_impl; | ||||
|     int m_flag; | ||||
| }; | ||||
|  | ||||
| template<typename T_SrcMat,typename T_FftIfc>  | ||||
| template<typename T_DestMat> inline  | ||||
| void fft_fwd_proxy<T_SrcMat,T_FftIfc>::evalTo(T_DestMat& dst) const | ||||
| { | ||||
|     m_ifc.fwd( dst, m_src, m_nfft); | ||||
| } | ||||
|  | ||||
| template<typename T_SrcMat,typename T_FftIfc>  | ||||
| template<typename T_DestMat> inline  | ||||
| void fft_inv_proxy<T_SrcMat,T_FftIfc>::evalTo(T_DestMat& dst) const | ||||
| { | ||||
|     m_ifc.inv( dst, m_src, m_nfft); | ||||
| } | ||||
|  | ||||
| } | ||||
| #endif | ||||
| /* vim: set filetype=cpp et sw=2 ts=2 ai: */ | ||||
		Reference in New Issue
	
	Block a user