add Eigen as a dependency
This commit is contained in:
		
							
								
								
									
										445
									
								
								external/include/eigen3/Eigen/src/OrderingMethods/Amd.h
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										445
									
								
								external/include/eigen3/Eigen/src/OrderingMethods/Amd.h
									
									
									
									
										vendored
									
									
										Normal file
									
								
							| @@ -0,0 +1,445 @@ | ||||
| // This file is part of Eigen, a lightweight C++ template library | ||||
| // for linear algebra. | ||||
| // | ||||
| // Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr> | ||||
|  | ||||
| /* | ||||
|  | ||||
| NOTE: this routine has been adapted from the CSparse library: | ||||
|  | ||||
| Copyright (c) 2006, Timothy A. Davis. | ||||
| http://www.suitesparse.com | ||||
|  | ||||
| CSparse is free software; you can redistribute it and/or | ||||
| modify it under the terms of the GNU Lesser General Public | ||||
| License as published by the Free Software Foundation; either | ||||
| version 2.1 of the License, or (at your option) any later version. | ||||
|  | ||||
| CSparse is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | ||||
| Lesser General Public License for more details. | ||||
|  | ||||
| You should have received a copy of the GNU Lesser General Public | ||||
| License along with this Module; if not, write to the Free Software | ||||
| Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | ||||
|  | ||||
| */ | ||||
|  | ||||
| #include "../Core/util/NonMPL2.h" | ||||
|  | ||||
| #ifndef EIGEN_SPARSE_AMD_H | ||||
| #define EIGEN_SPARSE_AMD_H | ||||
|  | ||||
| namespace Eigen {  | ||||
|  | ||||
| namespace internal { | ||||
|    | ||||
| template<typename T> inline T amd_flip(const T& i) { return -i-2; } | ||||
| template<typename T> inline T amd_unflip(const T& i) { return i<0 ? amd_flip(i) : i; } | ||||
| template<typename T0, typename T1> inline bool amd_marked(const T0* w, const T1& j) { return w[j]<0; } | ||||
| template<typename T0, typename T1> inline void amd_mark(const T0* w, const T1& j) { return w[j] = amd_flip(w[j]); } | ||||
|  | ||||
| /* clear w */ | ||||
| template<typename StorageIndex> | ||||
| static StorageIndex cs_wclear (StorageIndex mark, StorageIndex lemax, StorageIndex *w, StorageIndex n) | ||||
| { | ||||
|   StorageIndex k; | ||||
|   if(mark < 2 || (mark + lemax < 0)) | ||||
|   { | ||||
|     for(k = 0; k < n; k++) | ||||
|       if(w[k] != 0) | ||||
|         w[k] = 1; | ||||
|     mark = 2; | ||||
|   } | ||||
|   return (mark);     /* at this point, w[0..n-1] < mark holds */ | ||||
| } | ||||
|  | ||||
| /* depth-first search and postorder of a tree rooted at node j */ | ||||
| template<typename StorageIndex> | ||||
| StorageIndex cs_tdfs(StorageIndex j, StorageIndex k, StorageIndex *head, const StorageIndex *next, StorageIndex *post, StorageIndex *stack) | ||||
| { | ||||
|   StorageIndex i, p, top = 0; | ||||
|   if(!head || !next || !post || !stack) return (-1);    /* check inputs */ | ||||
|   stack[0] = j;                 /* place j on the stack */ | ||||
|   while (top >= 0)                /* while (stack is not empty) */ | ||||
|   { | ||||
|     p = stack[top];           /* p = top of stack */ | ||||
|     i = head[p];              /* i = youngest child of p */ | ||||
|     if(i == -1) | ||||
|     { | ||||
|       top--;                 /* p has no unordered children left */ | ||||
|       post[k++] = p;        /* node p is the kth postordered node */ | ||||
|     } | ||||
|     else | ||||
|     { | ||||
|       head[p] = next[i];   /* remove i from children of p */ | ||||
|       stack[++top] = i;     /* start dfs on child node i */ | ||||
|     } | ||||
|   } | ||||
|   return k; | ||||
| } | ||||
|  | ||||
|  | ||||
| /** \internal | ||||
|   * \ingroup OrderingMethods_Module  | ||||
|   * Approximate minimum degree ordering algorithm. | ||||
|   * | ||||
|   * \param[in] C the input selfadjoint matrix stored in compressed column major format. | ||||
|   * \param[out] perm the permutation P reducing the fill-in of the input matrix \a C | ||||
|   * | ||||
|   * Note that the input matrix \a C must be complete, that is both the upper and lower parts have to be stored, as well as the diagonal entries. | ||||
|   * On exit the values of C are destroyed */ | ||||
| template<typename Scalar, typename StorageIndex> | ||||
| void minimum_degree_ordering(SparseMatrix<Scalar,ColMajor,StorageIndex>& C, PermutationMatrix<Dynamic,Dynamic,StorageIndex>& perm) | ||||
| { | ||||
|   using std::sqrt; | ||||
|    | ||||
|   StorageIndex d, dk, dext, lemax = 0, e, elenk, eln, i, j, k, k1, | ||||
|                 k2, k3, jlast, ln, dense, nzmax, mindeg = 0, nvi, nvj, nvk, mark, wnvi, | ||||
|                 ok, nel = 0, p, p1, p2, p3, p4, pj, pk, pk1, pk2, pn, q, t, h; | ||||
|    | ||||
|   StorageIndex n = StorageIndex(C.cols()); | ||||
|   dense = std::max<StorageIndex> (16, StorageIndex(10 * sqrt(double(n))));   /* find dense threshold */ | ||||
|   dense = (std::min)(n-2, dense); | ||||
|    | ||||
|   StorageIndex cnz = StorageIndex(C.nonZeros()); | ||||
|   perm.resize(n+1); | ||||
|   t = cnz + cnz/5 + 2*n;                 /* add elbow room to C */ | ||||
|   C.resizeNonZeros(t); | ||||
|    | ||||
|   // get workspace | ||||
|   ei_declare_aligned_stack_constructed_variable(StorageIndex,W,8*(n+1),0); | ||||
|   StorageIndex* len     = W; | ||||
|   StorageIndex* nv      = W +   (n+1); | ||||
|   StorageIndex* next    = W + 2*(n+1); | ||||
|   StorageIndex* head    = W + 3*(n+1); | ||||
|   StorageIndex* elen    = W + 4*(n+1); | ||||
|   StorageIndex* degree  = W + 5*(n+1); | ||||
|   StorageIndex* w       = W + 6*(n+1); | ||||
|   StorageIndex* hhead   = W + 7*(n+1); | ||||
|   StorageIndex* last    = perm.indices().data();                              /* use P as workspace for last */ | ||||
|    | ||||
|   /* --- Initialize quotient graph ---------------------------------------- */ | ||||
|   StorageIndex* Cp = C.outerIndexPtr(); | ||||
|   StorageIndex* Ci = C.innerIndexPtr(); | ||||
|   for(k = 0; k < n; k++) | ||||
|     len[k] = Cp[k+1] - Cp[k]; | ||||
|   len[n] = 0; | ||||
|   nzmax = t; | ||||
|    | ||||
|   for(i = 0; i <= n; i++) | ||||
|   { | ||||
|     head[i]   = -1;                     // degree list i is empty | ||||
|     last[i]   = -1; | ||||
|     next[i]   = -1; | ||||
|     hhead[i]  = -1;                     // hash list i is empty  | ||||
|     nv[i]     = 1;                      // node i is just one node | ||||
|     w[i]      = 1;                      // node i is alive | ||||
|     elen[i]   = 0;                      // Ek of node i is empty | ||||
|     degree[i] = len[i];                 // degree of node i | ||||
|   } | ||||
|   mark = internal::cs_wclear<StorageIndex>(0, 0, w, n);         /* clear w */ | ||||
|    | ||||
|   /* --- Initialize degree lists ------------------------------------------ */ | ||||
|   for(i = 0; i < n; i++) | ||||
|   { | ||||
|     bool has_diag = false; | ||||
|     for(p = Cp[i]; p<Cp[i+1]; ++p) | ||||
|       if(Ci[p]==i) | ||||
|       { | ||||
|         has_diag = true; | ||||
|         break; | ||||
|       } | ||||
|     | ||||
|     d = degree[i]; | ||||
|     if(d == 1 && has_diag)           /* node i is empty */ | ||||
|     { | ||||
|       elen[i] = -2;                 /* element i is dead */ | ||||
|       nel++; | ||||
|       Cp[i] = -1;                   /* i is a root of assembly tree */ | ||||
|       w[i] = 0; | ||||
|     } | ||||
|     else if(d > dense || !has_diag)  /* node i is dense or has no structural diagonal element */ | ||||
|     { | ||||
|       nv[i] = 0;                    /* absorb i into element n */ | ||||
|       elen[i] = -1;                 /* node i is dead */ | ||||
|       nel++; | ||||
|       Cp[i] = amd_flip (n); | ||||
|       nv[n]++; | ||||
|     } | ||||
|     else | ||||
|     { | ||||
|       if(head[d] != -1) last[head[d]] = i; | ||||
|       next[i] = head[d];           /* put node i in degree list d */ | ||||
|       head[d] = i; | ||||
|     } | ||||
|   } | ||||
|    | ||||
|   elen[n] = -2;                         /* n is a dead element */ | ||||
|   Cp[n] = -1;                           /* n is a root of assembly tree */ | ||||
|   w[n] = 0;                             /* n is a dead element */ | ||||
|    | ||||
|   while (nel < n)                         /* while (selecting pivots) do */ | ||||
|   { | ||||
|     /* --- Select node of minimum approximate degree -------------------- */ | ||||
|     for(k = -1; mindeg < n && (k = head[mindeg]) == -1; mindeg++) {} | ||||
|     if(next[k] != -1) last[next[k]] = -1; | ||||
|     head[mindeg] = next[k];          /* remove k from degree list */ | ||||
|     elenk = elen[k];                  /* elenk = |Ek| */ | ||||
|     nvk = nv[k];                      /* # of nodes k represents */ | ||||
|     nel += nvk;                        /* nv[k] nodes of A eliminated */ | ||||
|      | ||||
|     /* --- Garbage collection ------------------------------------------- */ | ||||
|     if(elenk > 0 && cnz + mindeg >= nzmax) | ||||
|     { | ||||
|       for(j = 0; j < n; j++) | ||||
|       { | ||||
|         if((p = Cp[j]) >= 0)      /* j is a live node or element */ | ||||
|         { | ||||
|           Cp[j] = Ci[p];          /* save first entry of object */ | ||||
|           Ci[p] = amd_flip (j);    /* first entry is now amd_flip(j) */ | ||||
|         } | ||||
|       } | ||||
|       for(q = 0, p = 0; p < cnz; ) /* scan all of memory */ | ||||
|       { | ||||
|         if((j = amd_flip (Ci[p++])) >= 0)  /* found object j */ | ||||
|         { | ||||
|           Ci[q] = Cp[j];       /* restore first entry of object */ | ||||
|           Cp[j] = q++;          /* new pointer to object j */ | ||||
|           for(k3 = 0; k3 < len[j]-1; k3++) Ci[q++] = Ci[p++]; | ||||
|         } | ||||
|       } | ||||
|       cnz = q;                       /* Ci[cnz...nzmax-1] now free */ | ||||
|     } | ||||
|      | ||||
|     /* --- Construct new element ---------------------------------------- */ | ||||
|     dk = 0; | ||||
|     nv[k] = -nvk;                     /* flag k as in Lk */ | ||||
|     p = Cp[k]; | ||||
|     pk1 = (elenk == 0) ? p : cnz;      /* do in place if elen[k] == 0 */ | ||||
|     pk2 = pk1; | ||||
|     for(k1 = 1; k1 <= elenk + 1; k1++) | ||||
|     { | ||||
|       if(k1 > elenk) | ||||
|       { | ||||
|         e = k;                     /* search the nodes in k */ | ||||
|         pj = p;                    /* list of nodes starts at Ci[pj]*/ | ||||
|         ln = len[k] - elenk;      /* length of list of nodes in k */ | ||||
|       } | ||||
|       else | ||||
|       { | ||||
|         e = Ci[p++];              /* search the nodes in e */ | ||||
|         pj = Cp[e]; | ||||
|         ln = len[e];              /* length of list of nodes in e */ | ||||
|       } | ||||
|       for(k2 = 1; k2 <= ln; k2++) | ||||
|       { | ||||
|         i = Ci[pj++]; | ||||
|         if((nvi = nv[i]) <= 0) continue; /* node i dead, or seen */ | ||||
|         dk += nvi;                 /* degree[Lk] += size of node i */ | ||||
|         nv[i] = -nvi;             /* negate nv[i] to denote i in Lk*/ | ||||
|         Ci[pk2++] = i;            /* place i in Lk */ | ||||
|         if(next[i] != -1) last[next[i]] = last[i]; | ||||
|         if(last[i] != -1)         /* remove i from degree list */ | ||||
|         { | ||||
|           next[last[i]] = next[i]; | ||||
|         } | ||||
|         else | ||||
|         { | ||||
|           head[degree[i]] = next[i]; | ||||
|         } | ||||
|       } | ||||
|       if(e != k) | ||||
|       { | ||||
|         Cp[e] = amd_flip (k);      /* absorb e into k */ | ||||
|         w[e] = 0;                 /* e is now a dead element */ | ||||
|       } | ||||
|     } | ||||
|     if(elenk != 0) cnz = pk2;         /* Ci[cnz...nzmax] is free */ | ||||
|     degree[k] = dk;                   /* external degree of k - |Lk\i| */ | ||||
|     Cp[k] = pk1;                      /* element k is in Ci[pk1..pk2-1] */ | ||||
|     len[k] = pk2 - pk1; | ||||
|     elen[k] = -2;                     /* k is now an element */ | ||||
|      | ||||
|     /* --- Find set differences ----------------------------------------- */ | ||||
|     mark = internal::cs_wclear<StorageIndex>(mark, lemax, w, n);  /* clear w if necessary */ | ||||
|     for(pk = pk1; pk < pk2; pk++)    /* scan 1: find |Le\Lk| */ | ||||
|     { | ||||
|       i = Ci[pk]; | ||||
|       if((eln = elen[i]) <= 0) continue;/* skip if elen[i] empty */ | ||||
|       nvi = -nv[i];                      /* nv[i] was negated */ | ||||
|       wnvi = mark - nvi; | ||||
|       for(p = Cp[i]; p <= Cp[i] + eln - 1; p++)  /* scan Ei */ | ||||
|       { | ||||
|         e = Ci[p]; | ||||
|         if(w[e] >= mark) | ||||
|         { | ||||
|           w[e] -= nvi;          /* decrement |Le\Lk| */ | ||||
|         } | ||||
|         else if(w[e] != 0)        /* ensure e is a live element */ | ||||
|         { | ||||
|           w[e] = degree[e] + wnvi; /* 1st time e seen in scan 1 */ | ||||
|         } | ||||
|       } | ||||
|     } | ||||
|      | ||||
|     /* --- Degree update ------------------------------------------------ */ | ||||
|     for(pk = pk1; pk < pk2; pk++)    /* scan2: degree update */ | ||||
|     { | ||||
|       i = Ci[pk];                   /* consider node i in Lk */ | ||||
|       p1 = Cp[i]; | ||||
|       p2 = p1 + elen[i] - 1; | ||||
|       pn = p1; | ||||
|       for(h = 0, d = 0, p = p1; p <= p2; p++)    /* scan Ei */ | ||||
|       { | ||||
|         e = Ci[p]; | ||||
|         if(w[e] != 0)             /* e is an unabsorbed element */ | ||||
|         { | ||||
|           dext = w[e] - mark;   /* dext = |Le\Lk| */ | ||||
|           if(dext > 0) | ||||
|           { | ||||
|             d += dext;         /* sum up the set differences */ | ||||
|             Ci[pn++] = e;     /* keep e in Ei */ | ||||
|             h += e;            /* compute the hash of node i */ | ||||
|           } | ||||
|           else | ||||
|           { | ||||
|             Cp[e] = amd_flip (k);  /* aggressive absorb. e->k */ | ||||
|             w[e] = 0;             /* e is a dead element */ | ||||
|           } | ||||
|         } | ||||
|       } | ||||
|       elen[i] = pn - p1 + 1;        /* elen[i] = |Ei| */ | ||||
|       p3 = pn; | ||||
|       p4 = p1 + len[i]; | ||||
|       for(p = p2 + 1; p < p4; p++) /* prune edges in Ai */ | ||||
|       { | ||||
|         j = Ci[p]; | ||||
|         if((nvj = nv[j]) <= 0) continue; /* node j dead or in Lk */ | ||||
|         d += nvj;                  /* degree(i) += |j| */ | ||||
|         Ci[pn++] = j;             /* place j in node list of i */ | ||||
|         h += j;                    /* compute hash for node i */ | ||||
|       } | ||||
|       if(d == 0)                     /* check for mass elimination */ | ||||
|       { | ||||
|         Cp[i] = amd_flip (k);      /* absorb i into k */ | ||||
|         nvi = -nv[i]; | ||||
|         dk -= nvi;                 /* |Lk| -= |i| */ | ||||
|         nvk += nvi;                /* |k| += nv[i] */ | ||||
|         nel += nvi; | ||||
|         nv[i] = 0; | ||||
|         elen[i] = -1;             /* node i is dead */ | ||||
|       } | ||||
|       else | ||||
|       { | ||||
|         degree[i] = std::min<StorageIndex> (degree[i], d);   /* update degree(i) */ | ||||
|         Ci[pn] = Ci[p3];         /* move first node to end */ | ||||
|         Ci[p3] = Ci[p1];         /* move 1st el. to end of Ei */ | ||||
|         Ci[p1] = k;               /* add k as 1st element in of Ei */ | ||||
|         len[i] = pn - p1 + 1;     /* new len of adj. list of node i */ | ||||
|         h %= n;                    /* finalize hash of i */ | ||||
|         next[i] = hhead[h];      /* place i in hash bucket */ | ||||
|         hhead[h] = i; | ||||
|         last[i] = h;      /* save hash of i in last[i] */ | ||||
|       } | ||||
|     }                                   /* scan2 is done */ | ||||
|     degree[k] = dk;                   /* finalize |Lk| */ | ||||
|     lemax = std::max<StorageIndex>(lemax, dk); | ||||
|     mark = internal::cs_wclear<StorageIndex>(mark+lemax, lemax, w, n);    /* clear w */ | ||||
|      | ||||
|     /* --- Supernode detection ------------------------------------------ */ | ||||
|     for(pk = pk1; pk < pk2; pk++) | ||||
|     { | ||||
|       i = Ci[pk]; | ||||
|       if(nv[i] >= 0) continue;         /* skip if i is dead */ | ||||
|       h = last[i];                      /* scan hash bucket of node i */ | ||||
|       i = hhead[h]; | ||||
|       hhead[h] = -1;                    /* hash bucket will be empty */ | ||||
|       for(; i != -1 && next[i] != -1; i = next[i], mark++) | ||||
|       { | ||||
|         ln = len[i]; | ||||
|         eln = elen[i]; | ||||
|         for(p = Cp[i]+1; p <= Cp[i] + ln-1; p++) w[Ci[p]] = mark; | ||||
|         jlast = i; | ||||
|         for(j = next[i]; j != -1; ) /* compare i with all j */ | ||||
|         { | ||||
|           ok = (len[j] == ln) && (elen[j] == eln); | ||||
|           for(p = Cp[j] + 1; ok && p <= Cp[j] + ln - 1; p++) | ||||
|           { | ||||
|             if(w[Ci[p]] != mark) ok = 0;    /* compare i and j*/ | ||||
|           } | ||||
|           if(ok)                     /* i and j are identical */ | ||||
|           { | ||||
|             Cp[j] = amd_flip (i);  /* absorb j into i */ | ||||
|             nv[i] += nv[j]; | ||||
|             nv[j] = 0; | ||||
|             elen[j] = -1;         /* node j is dead */ | ||||
|             j = next[j];          /* delete j from hash bucket */ | ||||
|             next[jlast] = j; | ||||
|           } | ||||
|           else | ||||
|           { | ||||
|             jlast = j;             /* j and i are different */ | ||||
|             j = next[j]; | ||||
|           } | ||||
|         } | ||||
|       } | ||||
|     } | ||||
|      | ||||
|     /* --- Finalize new element------------------------------------------ */ | ||||
|     for(p = pk1, pk = pk1; pk < pk2; pk++)   /* finalize Lk */ | ||||
|     { | ||||
|       i = Ci[pk]; | ||||
|       if((nvi = -nv[i]) <= 0) continue;/* skip if i is dead */ | ||||
|       nv[i] = nvi;                      /* restore nv[i] */ | ||||
|       d = degree[i] + dk - nvi;         /* compute external degree(i) */ | ||||
|       d = std::min<StorageIndex> (d, n - nel - nvi); | ||||
|       if(head[d] != -1) last[head[d]] = i; | ||||
|       next[i] = head[d];               /* put i back in degree list */ | ||||
|       last[i] = -1; | ||||
|       head[d] = i; | ||||
|       mindeg = std::min<StorageIndex> (mindeg, d);       /* find new minimum degree */ | ||||
|       degree[i] = d; | ||||
|       Ci[p++] = i;                      /* place i in Lk */ | ||||
|     } | ||||
|     nv[k] = nvk;                      /* # nodes absorbed into k */ | ||||
|     if((len[k] = p-pk1) == 0)         /* length of adj list of element k*/ | ||||
|     { | ||||
|       Cp[k] = -1;                   /* k is a root of the tree */ | ||||
|       w[k] = 0;                     /* k is now a dead element */ | ||||
|     } | ||||
|     if(elenk != 0) cnz = p;           /* free unused space in Lk */ | ||||
|   } | ||||
|    | ||||
|   /* --- Postordering ----------------------------------------------------- */ | ||||
|   for(i = 0; i < n; i++) Cp[i] = amd_flip (Cp[i]);/* fix assembly tree */ | ||||
|   for(j = 0; j <= n; j++) head[j] = -1; | ||||
|   for(j = n; j >= 0; j--)              /* place unordered nodes in lists */ | ||||
|   { | ||||
|     if(nv[j] > 0) continue;          /* skip if j is an element */ | ||||
|     next[j] = head[Cp[j]];          /* place j in list of its parent */ | ||||
|     head[Cp[j]] = j; | ||||
|   } | ||||
|   for(e = n; e >= 0; e--)              /* place elements in lists */ | ||||
|   { | ||||
|     if(nv[e] <= 0) continue;         /* skip unless e is an element */ | ||||
|     if(Cp[e] != -1) | ||||
|     { | ||||
|       next[e] = head[Cp[e]];      /* place e in list of its parent */ | ||||
|       head[Cp[e]] = e; | ||||
|     } | ||||
|   } | ||||
|   for(k = 0, i = 0; i <= n; i++)       /* postorder the assembly tree */ | ||||
|   { | ||||
|     if(Cp[i] == -1) k = internal::cs_tdfs<StorageIndex>(i, k, head, next, perm.indices().data(), w); | ||||
|   } | ||||
|    | ||||
|   perm.indices().conservativeResize(n); | ||||
| } | ||||
|  | ||||
| } // namespace internal | ||||
|  | ||||
| } // end namespace Eigen | ||||
|  | ||||
| #endif // EIGEN_SPARSE_AMD_H | ||||
							
								
								
									
										1843
									
								
								external/include/eigen3/Eigen/src/OrderingMethods/Eigen_Colamd.h
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										1843
									
								
								external/include/eigen3/Eigen/src/OrderingMethods/Eigen_Colamd.h
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										157
									
								
								external/include/eigen3/Eigen/src/OrderingMethods/Ordering.h
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										157
									
								
								external/include/eigen3/Eigen/src/OrderingMethods/Ordering.h
									
									
									
									
										vendored
									
									
										Normal file
									
								
							| @@ -0,0 +1,157 @@ | ||||
|   | ||||
| // This file is part of Eigen, a lightweight C++ template library | ||||
| // for linear algebra. | ||||
| // | ||||
| // Copyright (C) 2012  Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> | ||||
| // | ||||
| // This Source Code Form is subject to the terms of the Mozilla | ||||
| // Public License v. 2.0. If a copy of the MPL was not distributed | ||||
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | ||||
|  | ||||
| #ifndef EIGEN_ORDERING_H | ||||
| #define EIGEN_ORDERING_H | ||||
|  | ||||
| namespace Eigen { | ||||
|    | ||||
| #include "Eigen_Colamd.h" | ||||
|  | ||||
| namespace internal { | ||||
|      | ||||
| /** \internal | ||||
|   * \ingroup OrderingMethods_Module | ||||
|   * \param[in] A the input non-symmetric matrix | ||||
|   * \param[out] symmat the symmetric pattern A^T+A from the input matrix \a A. | ||||
|   * FIXME: The values should not be considered here | ||||
|   */ | ||||
| template<typename MatrixType>  | ||||
| void ordering_helper_at_plus_a(const MatrixType& A, MatrixType& symmat) | ||||
| { | ||||
|   MatrixType C; | ||||
|   C = A.transpose(); // NOTE: Could be  costly | ||||
|   for (int i = 0; i < C.rows(); i++)  | ||||
|   { | ||||
|       for (typename MatrixType::InnerIterator it(C, i); it; ++it) | ||||
|         it.valueRef() = 0.0; | ||||
|   } | ||||
|   symmat = C + A; | ||||
| } | ||||
|      | ||||
| } | ||||
|  | ||||
| #ifndef EIGEN_MPL2_ONLY | ||||
|  | ||||
| /** \ingroup OrderingMethods_Module | ||||
|   * \class AMDOrdering | ||||
|   * | ||||
|   * Functor computing the \em approximate \em minimum \em degree ordering | ||||
|   * If the matrix is not structurally symmetric, an ordering of A^T+A is computed | ||||
|   * \tparam  StorageIndex The type of indices of the matrix  | ||||
|   * \sa COLAMDOrdering | ||||
|   */ | ||||
| template <typename StorageIndex> | ||||
| class AMDOrdering | ||||
| { | ||||
|   public: | ||||
|     typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType; | ||||
|      | ||||
|     /** Compute the permutation vector from a sparse matrix | ||||
|      * This routine is much faster if the input matrix is column-major      | ||||
|      */ | ||||
|     template <typename MatrixType> | ||||
|     void operator()(const MatrixType& mat, PermutationType& perm) | ||||
|     { | ||||
|       // Compute the symmetric pattern | ||||
|       SparseMatrix<typename MatrixType::Scalar, ColMajor, StorageIndex> symm; | ||||
|       internal::ordering_helper_at_plus_a(mat,symm);  | ||||
|      | ||||
|       // Call the AMD routine  | ||||
|       //m_mat.prune(keep_diag()); | ||||
|       internal::minimum_degree_ordering(symm, perm); | ||||
|     } | ||||
|      | ||||
|     /** Compute the permutation with a selfadjoint matrix */ | ||||
|     template <typename SrcType, unsigned int SrcUpLo>  | ||||
|     void operator()(const SparseSelfAdjointView<SrcType, SrcUpLo>& mat, PermutationType& perm) | ||||
|     {  | ||||
|       SparseMatrix<typename SrcType::Scalar, ColMajor, StorageIndex> C; C = mat; | ||||
|        | ||||
|       // Call the AMD routine  | ||||
|       // m_mat.prune(keep_diag()); //Remove the diagonal elements  | ||||
|       internal::minimum_degree_ordering(C, perm); | ||||
|     } | ||||
| }; | ||||
|  | ||||
| #endif // EIGEN_MPL2_ONLY | ||||
|  | ||||
| /** \ingroup OrderingMethods_Module | ||||
|   * \class NaturalOrdering | ||||
|   * | ||||
|   * Functor computing the natural ordering (identity) | ||||
|   *  | ||||
|   * \note Returns an empty permutation matrix | ||||
|   * \tparam  StorageIndex The type of indices of the matrix  | ||||
|   */ | ||||
| template <typename StorageIndex> | ||||
| class NaturalOrdering | ||||
| { | ||||
|   public: | ||||
|     typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType; | ||||
|      | ||||
|     /** Compute the permutation vector from a column-major sparse matrix */ | ||||
|     template <typename MatrixType> | ||||
|     void operator()(const MatrixType& /*mat*/, PermutationType& perm) | ||||
|     { | ||||
|       perm.resize(0);  | ||||
|     } | ||||
|      | ||||
| }; | ||||
|  | ||||
| /** \ingroup OrderingMethods_Module | ||||
|   * \class COLAMDOrdering | ||||
|   * | ||||
|   * \tparam  StorageIndex The type of indices of the matrix  | ||||
|   *  | ||||
|   * Functor computing the \em column \em approximate \em minimum \em degree ordering  | ||||
|   * The matrix should be in column-major and \b compressed format (see SparseMatrix::makeCompressed()). | ||||
|   */ | ||||
| template<typename StorageIndex> | ||||
| class COLAMDOrdering | ||||
| { | ||||
|   public: | ||||
|     typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType;  | ||||
|     typedef Matrix<StorageIndex, Dynamic, 1> IndexVector; | ||||
|      | ||||
|     /** Compute the permutation vector \a perm form the sparse matrix \a mat | ||||
|       * \warning The input sparse matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()). | ||||
|       */ | ||||
|     template <typename MatrixType> | ||||
|     void operator() (const MatrixType& mat, PermutationType& perm) | ||||
|     { | ||||
|       eigen_assert(mat.isCompressed() && "COLAMDOrdering requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to COLAMDOrdering"); | ||||
|        | ||||
|       StorageIndex m = StorageIndex(mat.rows()); | ||||
|       StorageIndex n = StorageIndex(mat.cols()); | ||||
|       StorageIndex nnz = StorageIndex(mat.nonZeros()); | ||||
|       // Get the recommended value of Alen to be used by colamd | ||||
|       StorageIndex Alen = internal::colamd_recommended(nnz, m, n);  | ||||
|       // Set the default parameters | ||||
|       double knobs [COLAMD_KNOBS];  | ||||
|       StorageIndex stats [COLAMD_STATS]; | ||||
|       internal::colamd_set_defaults(knobs); | ||||
|        | ||||
|       IndexVector p(n+1), A(Alen);  | ||||
|       for(StorageIndex i=0; i <= n; i++)   p(i) = mat.outerIndexPtr()[i]; | ||||
|       for(StorageIndex i=0; i < nnz; i++)  A(i) = mat.innerIndexPtr()[i]; | ||||
|       // Call Colamd routine to compute the ordering  | ||||
|       StorageIndex info = internal::colamd(m, n, Alen, A.data(), p.data(), knobs, stats);  | ||||
|       EIGEN_UNUSED_VARIABLE(info); | ||||
|       eigen_assert( info && "COLAMD failed " ); | ||||
|        | ||||
|       perm.resize(n); | ||||
|       for (StorageIndex i = 0; i < n; i++) perm.indices()(p(i)) = i; | ||||
|     } | ||||
| }; | ||||
|  | ||||
| } // end namespace Eigen | ||||
|  | ||||
| #endif | ||||
		Reference in New Issue
	
	Block a user