add Eigen as a dependency
This commit is contained in:
462
external/include/eigen3/Eigen/src/Jacobi/Jacobi.h
vendored
Normal file
462
external/include/eigen3/Eigen/src/Jacobi/Jacobi.h
vendored
Normal file
@@ -0,0 +1,462 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_JACOBI_H
|
||||
#define EIGEN_JACOBI_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \ingroup Jacobi_Module
|
||||
* \jacobi_module
|
||||
* \class JacobiRotation
|
||||
* \brief Rotation given by a cosine-sine pair.
|
||||
*
|
||||
* This class represents a Jacobi or Givens rotation.
|
||||
* This is a 2D rotation in the plane \c J of angle \f$ \theta \f$ defined by
|
||||
* its cosine \c c and sine \c s as follow:
|
||||
* \f$ J = \left ( \begin{array}{cc} c & \overline s \\ -s & \overline c \end{array} \right ) \f$
|
||||
*
|
||||
* You can apply the respective counter-clockwise rotation to a column vector \c v by
|
||||
* applying its adjoint on the left: \f$ v = J^* v \f$ that translates to the following Eigen code:
|
||||
* \code
|
||||
* v.applyOnTheLeft(J.adjoint());
|
||||
* \endcode
|
||||
*
|
||||
* \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
|
||||
*/
|
||||
template<typename Scalar> class JacobiRotation
|
||||
{
|
||||
public:
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
|
||||
/** Default constructor without any initialization. */
|
||||
JacobiRotation() {}
|
||||
|
||||
/** Construct a planar rotation from a cosine-sine pair (\a c, \c s). */
|
||||
JacobiRotation(const Scalar& c, const Scalar& s) : m_c(c), m_s(s) {}
|
||||
|
||||
Scalar& c() { return m_c; }
|
||||
Scalar c() const { return m_c; }
|
||||
Scalar& s() { return m_s; }
|
||||
Scalar s() const { return m_s; }
|
||||
|
||||
/** Concatenates two planar rotation */
|
||||
JacobiRotation operator*(const JacobiRotation& other)
|
||||
{
|
||||
using numext::conj;
|
||||
return JacobiRotation(m_c * other.m_c - conj(m_s) * other.m_s,
|
||||
conj(m_c * conj(other.m_s) + conj(m_s) * conj(other.m_c)));
|
||||
}
|
||||
|
||||
/** Returns the transposed transformation */
|
||||
JacobiRotation transpose() const { using numext::conj; return JacobiRotation(m_c, -conj(m_s)); }
|
||||
|
||||
/** Returns the adjoint transformation */
|
||||
JacobiRotation adjoint() const { using numext::conj; return JacobiRotation(conj(m_c), -m_s); }
|
||||
|
||||
template<typename Derived>
|
||||
bool makeJacobi(const MatrixBase<Derived>&, Index p, Index q);
|
||||
bool makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z);
|
||||
|
||||
void makeGivens(const Scalar& p, const Scalar& q, Scalar* r=0);
|
||||
|
||||
protected:
|
||||
void makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::true_type);
|
||||
void makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::false_type);
|
||||
|
||||
Scalar m_c, m_s;
|
||||
};
|
||||
|
||||
/** Makes \c *this as a Jacobi rotation \a J such that applying \a J on both the right and left sides of the selfadjoint 2x2 matrix
|
||||
* \f$ B = \left ( \begin{array}{cc} x & y \\ \overline y & z \end{array} \right )\f$ yields a diagonal matrix \f$ A = J^* B J \f$
|
||||
*
|
||||
* \sa MatrixBase::makeJacobi(const MatrixBase<Derived>&, Index, Index), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
|
||||
*/
|
||||
template<typename Scalar>
|
||||
bool JacobiRotation<Scalar>::makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z)
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::abs;
|
||||
RealScalar deno = RealScalar(2)*abs(y);
|
||||
if(deno < (std::numeric_limits<RealScalar>::min)())
|
||||
{
|
||||
m_c = Scalar(1);
|
||||
m_s = Scalar(0);
|
||||
return false;
|
||||
}
|
||||
else
|
||||
{
|
||||
RealScalar tau = (x-z)/deno;
|
||||
RealScalar w = sqrt(numext::abs2(tau) + RealScalar(1));
|
||||
RealScalar t;
|
||||
if(tau>RealScalar(0))
|
||||
{
|
||||
t = RealScalar(1) / (tau + w);
|
||||
}
|
||||
else
|
||||
{
|
||||
t = RealScalar(1) / (tau - w);
|
||||
}
|
||||
RealScalar sign_t = t > RealScalar(0) ? RealScalar(1) : RealScalar(-1);
|
||||
RealScalar n = RealScalar(1) / sqrt(numext::abs2(t)+RealScalar(1));
|
||||
m_s = - sign_t * (numext::conj(y) / abs(y)) * abs(t) * n;
|
||||
m_c = n;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
/** Makes \c *this as a Jacobi rotation \c J such that applying \a J on both the right and left sides of the 2x2 selfadjoint matrix
|
||||
* \f$ B = \left ( \begin{array}{cc} \text{this}_{pp} & \text{this}_{pq} \\ (\text{this}_{pq})^* & \text{this}_{qq} \end{array} \right )\f$ yields
|
||||
* a diagonal matrix \f$ A = J^* B J \f$
|
||||
*
|
||||
* Example: \include Jacobi_makeJacobi.cpp
|
||||
* Output: \verbinclude Jacobi_makeJacobi.out
|
||||
*
|
||||
* \sa JacobiRotation::makeJacobi(RealScalar, Scalar, RealScalar), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
|
||||
*/
|
||||
template<typename Scalar>
|
||||
template<typename Derived>
|
||||
inline bool JacobiRotation<Scalar>::makeJacobi(const MatrixBase<Derived>& m, Index p, Index q)
|
||||
{
|
||||
return makeJacobi(numext::real(m.coeff(p,p)), m.coeff(p,q), numext::real(m.coeff(q,q)));
|
||||
}
|
||||
|
||||
/** Makes \c *this as a Givens rotation \c G such that applying \f$ G^* \f$ to the left of the vector
|
||||
* \f$ V = \left ( \begin{array}{c} p \\ q \end{array} \right )\f$ yields:
|
||||
* \f$ G^* V = \left ( \begin{array}{c} r \\ 0 \end{array} \right )\f$.
|
||||
*
|
||||
* The value of \a r is returned if \a r is not null (the default is null).
|
||||
* Also note that G is built such that the cosine is always real.
|
||||
*
|
||||
* Example: \include Jacobi_makeGivens.cpp
|
||||
* Output: \verbinclude Jacobi_makeGivens.out
|
||||
*
|
||||
* This function implements the continuous Givens rotation generation algorithm
|
||||
* found in Anderson (2000), Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem.
|
||||
* LAPACK Working Note 150, University of Tennessee, UT-CS-00-454, December 4, 2000.
|
||||
*
|
||||
* \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
|
||||
*/
|
||||
template<typename Scalar>
|
||||
void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r)
|
||||
{
|
||||
makeGivens(p, q, r, typename internal::conditional<NumTraits<Scalar>::IsComplex, internal::true_type, internal::false_type>::type());
|
||||
}
|
||||
|
||||
|
||||
// specialization for complexes
|
||||
template<typename Scalar>
|
||||
void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::true_type)
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::abs;
|
||||
using numext::conj;
|
||||
|
||||
if(q==Scalar(0))
|
||||
{
|
||||
m_c = numext::real(p)<0 ? Scalar(-1) : Scalar(1);
|
||||
m_s = 0;
|
||||
if(r) *r = m_c * p;
|
||||
}
|
||||
else if(p==Scalar(0))
|
||||
{
|
||||
m_c = 0;
|
||||
m_s = -q/abs(q);
|
||||
if(r) *r = abs(q);
|
||||
}
|
||||
else
|
||||
{
|
||||
RealScalar p1 = numext::norm1(p);
|
||||
RealScalar q1 = numext::norm1(q);
|
||||
if(p1>=q1)
|
||||
{
|
||||
Scalar ps = p / p1;
|
||||
RealScalar p2 = numext::abs2(ps);
|
||||
Scalar qs = q / p1;
|
||||
RealScalar q2 = numext::abs2(qs);
|
||||
|
||||
RealScalar u = sqrt(RealScalar(1) + q2/p2);
|
||||
if(numext::real(p)<RealScalar(0))
|
||||
u = -u;
|
||||
|
||||
m_c = Scalar(1)/u;
|
||||
m_s = -qs*conj(ps)*(m_c/p2);
|
||||
if(r) *r = p * u;
|
||||
}
|
||||
else
|
||||
{
|
||||
Scalar ps = p / q1;
|
||||
RealScalar p2 = numext::abs2(ps);
|
||||
Scalar qs = q / q1;
|
||||
RealScalar q2 = numext::abs2(qs);
|
||||
|
||||
RealScalar u = q1 * sqrt(p2 + q2);
|
||||
if(numext::real(p)<RealScalar(0))
|
||||
u = -u;
|
||||
|
||||
p1 = abs(p);
|
||||
ps = p/p1;
|
||||
m_c = p1/u;
|
||||
m_s = -conj(ps) * (q/u);
|
||||
if(r) *r = ps * u;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// specialization for reals
|
||||
template<typename Scalar>
|
||||
void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::false_type)
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::abs;
|
||||
if(q==Scalar(0))
|
||||
{
|
||||
m_c = p<Scalar(0) ? Scalar(-1) : Scalar(1);
|
||||
m_s = Scalar(0);
|
||||
if(r) *r = abs(p);
|
||||
}
|
||||
else if(p==Scalar(0))
|
||||
{
|
||||
m_c = Scalar(0);
|
||||
m_s = q<Scalar(0) ? Scalar(1) : Scalar(-1);
|
||||
if(r) *r = abs(q);
|
||||
}
|
||||
else if(abs(p) > abs(q))
|
||||
{
|
||||
Scalar t = q/p;
|
||||
Scalar u = sqrt(Scalar(1) + numext::abs2(t));
|
||||
if(p<Scalar(0))
|
||||
u = -u;
|
||||
m_c = Scalar(1)/u;
|
||||
m_s = -t * m_c;
|
||||
if(r) *r = p * u;
|
||||
}
|
||||
else
|
||||
{
|
||||
Scalar t = p/q;
|
||||
Scalar u = sqrt(Scalar(1) + numext::abs2(t));
|
||||
if(q<Scalar(0))
|
||||
u = -u;
|
||||
m_s = -Scalar(1)/u;
|
||||
m_c = -t * m_s;
|
||||
if(r) *r = q * u;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/****************************************************************************************
|
||||
* Implementation of MatrixBase methods
|
||||
****************************************************************************************/
|
||||
|
||||
namespace internal {
|
||||
/** \jacobi_module
|
||||
* Applies the clock wise 2D rotation \a j to the set of 2D vectors of cordinates \a x and \a y:
|
||||
* \f$ \left ( \begin{array}{cc} x \\ y \end{array} \right ) = J \left ( \begin{array}{cc} x \\ y \end{array} \right ) \f$
|
||||
*
|
||||
* \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
|
||||
*/
|
||||
template<typename VectorX, typename VectorY, typename OtherScalar>
|
||||
void apply_rotation_in_the_plane(DenseBase<VectorX>& xpr_x, DenseBase<VectorY>& xpr_y, const JacobiRotation<OtherScalar>& j);
|
||||
}
|
||||
|
||||
/** \jacobi_module
|
||||
* Applies the rotation in the plane \a j to the rows \a p and \a q of \c *this, i.e., it computes B = J * B,
|
||||
* with \f$ B = \left ( \begin{array}{cc} \text{*this.row}(p) \\ \text{*this.row}(q) \end{array} \right ) \f$.
|
||||
*
|
||||
* \sa class JacobiRotation, MatrixBase::applyOnTheRight(), internal::apply_rotation_in_the_plane()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherScalar>
|
||||
inline void MatrixBase<Derived>::applyOnTheLeft(Index p, Index q, const JacobiRotation<OtherScalar>& j)
|
||||
{
|
||||
RowXpr x(this->row(p));
|
||||
RowXpr y(this->row(q));
|
||||
internal::apply_rotation_in_the_plane(x, y, j);
|
||||
}
|
||||
|
||||
/** \ingroup Jacobi_Module
|
||||
* Applies the rotation in the plane \a j to the columns \a p and \a q of \c *this, i.e., it computes B = B * J
|
||||
* with \f$ B = \left ( \begin{array}{cc} \text{*this.col}(p) & \text{*this.col}(q) \end{array} \right ) \f$.
|
||||
*
|
||||
* \sa class JacobiRotation, MatrixBase::applyOnTheLeft(), internal::apply_rotation_in_the_plane()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherScalar>
|
||||
inline void MatrixBase<Derived>::applyOnTheRight(Index p, Index q, const JacobiRotation<OtherScalar>& j)
|
||||
{
|
||||
ColXpr x(this->col(p));
|
||||
ColXpr y(this->col(q));
|
||||
internal::apply_rotation_in_the_plane(x, y, j.transpose());
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Scalar, typename OtherScalar,
|
||||
int SizeAtCompileTime, int MinAlignment, bool Vectorizable>
|
||||
struct apply_rotation_in_the_plane_selector
|
||||
{
|
||||
static inline void run(Scalar *x, Index incrx, Scalar *y, Index incry, Index size, OtherScalar c, OtherScalar s)
|
||||
{
|
||||
for(Index i=0; i<size; ++i)
|
||||
{
|
||||
Scalar xi = *x;
|
||||
Scalar yi = *y;
|
||||
*x = c * xi + numext::conj(s) * yi;
|
||||
*y = -s * xi + numext::conj(c) * yi;
|
||||
x += incrx;
|
||||
y += incry;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar, typename OtherScalar,
|
||||
int SizeAtCompileTime, int MinAlignment>
|
||||
struct apply_rotation_in_the_plane_selector<Scalar,OtherScalar,SizeAtCompileTime,MinAlignment,true /* vectorizable */>
|
||||
{
|
||||
static inline void run(Scalar *x, Index incrx, Scalar *y, Index incry, Index size, OtherScalar c, OtherScalar s)
|
||||
{
|
||||
enum {
|
||||
PacketSize = packet_traits<Scalar>::size,
|
||||
OtherPacketSize = packet_traits<OtherScalar>::size
|
||||
};
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
typedef typename packet_traits<OtherScalar>::type OtherPacket;
|
||||
|
||||
/*** dynamic-size vectorized paths ***/
|
||||
if(SizeAtCompileTime == Dynamic && ((incrx==1 && incry==1) || PacketSize == 1))
|
||||
{
|
||||
// both vectors are sequentially stored in memory => vectorization
|
||||
enum { Peeling = 2 };
|
||||
|
||||
Index alignedStart = internal::first_default_aligned(y, size);
|
||||
Index alignedEnd = alignedStart + ((size-alignedStart)/PacketSize)*PacketSize;
|
||||
|
||||
const OtherPacket pc = pset1<OtherPacket>(c);
|
||||
const OtherPacket ps = pset1<OtherPacket>(s);
|
||||
conj_helper<OtherPacket,Packet,NumTraits<OtherScalar>::IsComplex,false> pcj;
|
||||
conj_helper<OtherPacket,Packet,false,false> pm;
|
||||
|
||||
for(Index i=0; i<alignedStart; ++i)
|
||||
{
|
||||
Scalar xi = x[i];
|
||||
Scalar yi = y[i];
|
||||
x[i] = c * xi + numext::conj(s) * yi;
|
||||
y[i] = -s * xi + numext::conj(c) * yi;
|
||||
}
|
||||
|
||||
Scalar* EIGEN_RESTRICT px = x + alignedStart;
|
||||
Scalar* EIGEN_RESTRICT py = y + alignedStart;
|
||||
|
||||
if(internal::first_default_aligned(x, size)==alignedStart)
|
||||
{
|
||||
for(Index i=alignedStart; i<alignedEnd; i+=PacketSize)
|
||||
{
|
||||
Packet xi = pload<Packet>(px);
|
||||
Packet yi = pload<Packet>(py);
|
||||
pstore(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi)));
|
||||
pstore(py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi)));
|
||||
px += PacketSize;
|
||||
py += PacketSize;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
Index peelingEnd = alignedStart + ((size-alignedStart)/(Peeling*PacketSize))*(Peeling*PacketSize);
|
||||
for(Index i=alignedStart; i<peelingEnd; i+=Peeling*PacketSize)
|
||||
{
|
||||
Packet xi = ploadu<Packet>(px);
|
||||
Packet xi1 = ploadu<Packet>(px+PacketSize);
|
||||
Packet yi = pload <Packet>(py);
|
||||
Packet yi1 = pload <Packet>(py+PacketSize);
|
||||
pstoreu(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi)));
|
||||
pstoreu(px+PacketSize, padd(pm.pmul(pc,xi1),pcj.pmul(ps,yi1)));
|
||||
pstore (py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi)));
|
||||
pstore (py+PacketSize, psub(pcj.pmul(pc,yi1),pm.pmul(ps,xi1)));
|
||||
px += Peeling*PacketSize;
|
||||
py += Peeling*PacketSize;
|
||||
}
|
||||
if(alignedEnd!=peelingEnd)
|
||||
{
|
||||
Packet xi = ploadu<Packet>(x+peelingEnd);
|
||||
Packet yi = pload <Packet>(y+peelingEnd);
|
||||
pstoreu(x+peelingEnd, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi)));
|
||||
pstore (y+peelingEnd, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi)));
|
||||
}
|
||||
}
|
||||
|
||||
for(Index i=alignedEnd; i<size; ++i)
|
||||
{
|
||||
Scalar xi = x[i];
|
||||
Scalar yi = y[i];
|
||||
x[i] = c * xi + numext::conj(s) * yi;
|
||||
y[i] = -s * xi + numext::conj(c) * yi;
|
||||
}
|
||||
}
|
||||
|
||||
/*** fixed-size vectorized path ***/
|
||||
else if(SizeAtCompileTime != Dynamic && MinAlignment>0) // FIXME should be compared to the required alignment
|
||||
{
|
||||
const OtherPacket pc = pset1<OtherPacket>(c);
|
||||
const OtherPacket ps = pset1<OtherPacket>(s);
|
||||
conj_helper<OtherPacket,Packet,NumTraits<OtherPacket>::IsComplex,false> pcj;
|
||||
conj_helper<OtherPacket,Packet,false,false> pm;
|
||||
Scalar* EIGEN_RESTRICT px = x;
|
||||
Scalar* EIGEN_RESTRICT py = y;
|
||||
for(Index i=0; i<size; i+=PacketSize)
|
||||
{
|
||||
Packet xi = pload<Packet>(px);
|
||||
Packet yi = pload<Packet>(py);
|
||||
pstore(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi)));
|
||||
pstore(py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi)));
|
||||
px += PacketSize;
|
||||
py += PacketSize;
|
||||
}
|
||||
}
|
||||
|
||||
/*** non-vectorized path ***/
|
||||
else
|
||||
{
|
||||
apply_rotation_in_the_plane_selector<Scalar,OtherScalar,SizeAtCompileTime,MinAlignment,false>::run(x,incrx,y,incry,size,c,s);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename VectorX, typename VectorY, typename OtherScalar>
|
||||
void /*EIGEN_DONT_INLINE*/ apply_rotation_in_the_plane(DenseBase<VectorX>& xpr_x, DenseBase<VectorY>& xpr_y, const JacobiRotation<OtherScalar>& j)
|
||||
{
|
||||
typedef typename VectorX::Scalar Scalar;
|
||||
const bool Vectorizable = (VectorX::Flags & VectorY::Flags & PacketAccessBit)
|
||||
&& (int(packet_traits<Scalar>::size) == int(packet_traits<OtherScalar>::size));
|
||||
|
||||
eigen_assert(xpr_x.size() == xpr_y.size());
|
||||
Index size = xpr_x.size();
|
||||
Index incrx = xpr_x.derived().innerStride();
|
||||
Index incry = xpr_y.derived().innerStride();
|
||||
|
||||
Scalar* EIGEN_RESTRICT x = &xpr_x.derived().coeffRef(0);
|
||||
Scalar* EIGEN_RESTRICT y = &xpr_y.derived().coeffRef(0);
|
||||
|
||||
OtherScalar c = j.c();
|
||||
OtherScalar s = j.s();
|
||||
if (c==OtherScalar(1) && s==OtherScalar(0))
|
||||
return;
|
||||
|
||||
apply_rotation_in_the_plane_selector<
|
||||
Scalar,OtherScalar,
|
||||
VectorX::SizeAtCompileTime,
|
||||
EIGEN_PLAIN_ENUM_MIN(evaluator<VectorX>::Alignment, evaluator<VectorY>::Alignment),
|
||||
Vectorizable>::run(x,incrx,y,incry,size,c,s);
|
||||
}
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_JACOBI_H
|
||||
Reference in New Issue
Block a user