add Eigen as a dependency
This commit is contained in:
226
external/include/eigen3/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h
vendored
Normal file
226
external/include/eigen3/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h
vendored
Normal file
@@ -0,0 +1,226 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_BASIC_PRECONDITIONERS_H
|
||||
#define EIGEN_BASIC_PRECONDITIONERS_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \ingroup IterativeLinearSolvers_Module
|
||||
* \brief A preconditioner based on the digonal entries
|
||||
*
|
||||
* This class allows to approximately solve for A.x = b problems assuming A is a diagonal matrix.
|
||||
* In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for:
|
||||
\code
|
||||
A.diagonal().asDiagonal() . x = b
|
||||
\endcode
|
||||
*
|
||||
* \tparam _Scalar the type of the scalar.
|
||||
*
|
||||
* \implsparsesolverconcept
|
||||
*
|
||||
* This preconditioner is suitable for both selfadjoint and general problems.
|
||||
* The diagonal entries are pre-inverted and stored into a dense vector.
|
||||
*
|
||||
* \note A variant that has yet to be implemented would attempt to preserve the norm of each column.
|
||||
*
|
||||
* \sa class LeastSquareDiagonalPreconditioner, class ConjugateGradient
|
||||
*/
|
||||
template <typename _Scalar>
|
||||
class DiagonalPreconditioner
|
||||
{
|
||||
typedef _Scalar Scalar;
|
||||
typedef Matrix<Scalar,Dynamic,1> Vector;
|
||||
public:
|
||||
typedef typename Vector::StorageIndex StorageIndex;
|
||||
enum {
|
||||
ColsAtCompileTime = Dynamic,
|
||||
MaxColsAtCompileTime = Dynamic
|
||||
};
|
||||
|
||||
DiagonalPreconditioner() : m_isInitialized(false) {}
|
||||
|
||||
template<typename MatType>
|
||||
explicit DiagonalPreconditioner(const MatType& mat) : m_invdiag(mat.cols())
|
||||
{
|
||||
compute(mat);
|
||||
}
|
||||
|
||||
Index rows() const { return m_invdiag.size(); }
|
||||
Index cols() const { return m_invdiag.size(); }
|
||||
|
||||
template<typename MatType>
|
||||
DiagonalPreconditioner& analyzePattern(const MatType& )
|
||||
{
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename MatType>
|
||||
DiagonalPreconditioner& factorize(const MatType& mat)
|
||||
{
|
||||
m_invdiag.resize(mat.cols());
|
||||
for(int j=0; j<mat.outerSize(); ++j)
|
||||
{
|
||||
typename MatType::InnerIterator it(mat,j);
|
||||
while(it && it.index()!=j) ++it;
|
||||
if(it && it.index()==j && it.value()!=Scalar(0))
|
||||
m_invdiag(j) = Scalar(1)/it.value();
|
||||
else
|
||||
m_invdiag(j) = Scalar(1);
|
||||
}
|
||||
m_isInitialized = true;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename MatType>
|
||||
DiagonalPreconditioner& compute(const MatType& mat)
|
||||
{
|
||||
return factorize(mat);
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
template<typename Rhs, typename Dest>
|
||||
void _solve_impl(const Rhs& b, Dest& x) const
|
||||
{
|
||||
x = m_invdiag.array() * b.array() ;
|
||||
}
|
||||
|
||||
template<typename Rhs> inline const Solve<DiagonalPreconditioner, Rhs>
|
||||
solve(const MatrixBase<Rhs>& b) const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "DiagonalPreconditioner is not initialized.");
|
||||
eigen_assert(m_invdiag.size()==b.rows()
|
||||
&& "DiagonalPreconditioner::solve(): invalid number of rows of the right hand side matrix b");
|
||||
return Solve<DiagonalPreconditioner, Rhs>(*this, b.derived());
|
||||
}
|
||||
|
||||
ComputationInfo info() { return Success; }
|
||||
|
||||
protected:
|
||||
Vector m_invdiag;
|
||||
bool m_isInitialized;
|
||||
};
|
||||
|
||||
/** \ingroup IterativeLinearSolvers_Module
|
||||
* \brief Jacobi preconditioner for LeastSquaresConjugateGradient
|
||||
*
|
||||
* This class allows to approximately solve for A' A x = A' b problems assuming A' A is a diagonal matrix.
|
||||
* In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for:
|
||||
\code
|
||||
(A.adjoint() * A).diagonal().asDiagonal() * x = b
|
||||
\endcode
|
||||
*
|
||||
* \tparam _Scalar the type of the scalar.
|
||||
*
|
||||
* \implsparsesolverconcept
|
||||
*
|
||||
* The diagonal entries are pre-inverted and stored into a dense vector.
|
||||
*
|
||||
* \sa class LeastSquaresConjugateGradient, class DiagonalPreconditioner
|
||||
*/
|
||||
template <typename _Scalar>
|
||||
class LeastSquareDiagonalPreconditioner : public DiagonalPreconditioner<_Scalar>
|
||||
{
|
||||
typedef _Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef DiagonalPreconditioner<_Scalar> Base;
|
||||
using Base::m_invdiag;
|
||||
public:
|
||||
|
||||
LeastSquareDiagonalPreconditioner() : Base() {}
|
||||
|
||||
template<typename MatType>
|
||||
explicit LeastSquareDiagonalPreconditioner(const MatType& mat) : Base()
|
||||
{
|
||||
compute(mat);
|
||||
}
|
||||
|
||||
template<typename MatType>
|
||||
LeastSquareDiagonalPreconditioner& analyzePattern(const MatType& )
|
||||
{
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename MatType>
|
||||
LeastSquareDiagonalPreconditioner& factorize(const MatType& mat)
|
||||
{
|
||||
// Compute the inverse squared-norm of each column of mat
|
||||
m_invdiag.resize(mat.cols());
|
||||
if(MatType::IsRowMajor)
|
||||
{
|
||||
m_invdiag.setZero();
|
||||
for(Index j=0; j<mat.outerSize(); ++j)
|
||||
{
|
||||
for(typename MatType::InnerIterator it(mat,j); it; ++it)
|
||||
m_invdiag(it.index()) += numext::abs2(it.value());
|
||||
}
|
||||
for(Index j=0; j<mat.cols(); ++j)
|
||||
if(numext::real(m_invdiag(j))>RealScalar(0))
|
||||
m_invdiag(j) = RealScalar(1)/numext::real(m_invdiag(j));
|
||||
}
|
||||
else
|
||||
{
|
||||
for(Index j=0; j<mat.outerSize(); ++j)
|
||||
{
|
||||
RealScalar sum = mat.col(j).squaredNorm();
|
||||
if(sum>RealScalar(0))
|
||||
m_invdiag(j) = RealScalar(1)/sum;
|
||||
else
|
||||
m_invdiag(j) = RealScalar(1);
|
||||
}
|
||||
}
|
||||
Base::m_isInitialized = true;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename MatType>
|
||||
LeastSquareDiagonalPreconditioner& compute(const MatType& mat)
|
||||
{
|
||||
return factorize(mat);
|
||||
}
|
||||
|
||||
ComputationInfo info() { return Success; }
|
||||
|
||||
protected:
|
||||
};
|
||||
|
||||
/** \ingroup IterativeLinearSolvers_Module
|
||||
* \brief A naive preconditioner which approximates any matrix as the identity matrix
|
||||
*
|
||||
* \implsparsesolverconcept
|
||||
*
|
||||
* \sa class DiagonalPreconditioner
|
||||
*/
|
||||
class IdentityPreconditioner
|
||||
{
|
||||
public:
|
||||
|
||||
IdentityPreconditioner() {}
|
||||
|
||||
template<typename MatrixType>
|
||||
explicit IdentityPreconditioner(const MatrixType& ) {}
|
||||
|
||||
template<typename MatrixType>
|
||||
IdentityPreconditioner& analyzePattern(const MatrixType& ) { return *this; }
|
||||
|
||||
template<typename MatrixType>
|
||||
IdentityPreconditioner& factorize(const MatrixType& ) { return *this; }
|
||||
|
||||
template<typename MatrixType>
|
||||
IdentityPreconditioner& compute(const MatrixType& ) { return *this; }
|
||||
|
||||
template<typename Rhs>
|
||||
inline const Rhs& solve(const Rhs& b) const { return b; }
|
||||
|
||||
ComputationInfo info() { return Success; }
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_BASIC_PRECONDITIONERS_H
|
||||
Reference in New Issue
Block a user