add Eigen as a dependency
This commit is contained in:
226
external/include/eigen3/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h
vendored
Normal file
226
external/include/eigen3/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h
vendored
Normal file
@@ -0,0 +1,226 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_BASIC_PRECONDITIONERS_H
|
||||
#define EIGEN_BASIC_PRECONDITIONERS_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \ingroup IterativeLinearSolvers_Module
|
||||
* \brief A preconditioner based on the digonal entries
|
||||
*
|
||||
* This class allows to approximately solve for A.x = b problems assuming A is a diagonal matrix.
|
||||
* In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for:
|
||||
\code
|
||||
A.diagonal().asDiagonal() . x = b
|
||||
\endcode
|
||||
*
|
||||
* \tparam _Scalar the type of the scalar.
|
||||
*
|
||||
* \implsparsesolverconcept
|
||||
*
|
||||
* This preconditioner is suitable for both selfadjoint and general problems.
|
||||
* The diagonal entries are pre-inverted and stored into a dense vector.
|
||||
*
|
||||
* \note A variant that has yet to be implemented would attempt to preserve the norm of each column.
|
||||
*
|
||||
* \sa class LeastSquareDiagonalPreconditioner, class ConjugateGradient
|
||||
*/
|
||||
template <typename _Scalar>
|
||||
class DiagonalPreconditioner
|
||||
{
|
||||
typedef _Scalar Scalar;
|
||||
typedef Matrix<Scalar,Dynamic,1> Vector;
|
||||
public:
|
||||
typedef typename Vector::StorageIndex StorageIndex;
|
||||
enum {
|
||||
ColsAtCompileTime = Dynamic,
|
||||
MaxColsAtCompileTime = Dynamic
|
||||
};
|
||||
|
||||
DiagonalPreconditioner() : m_isInitialized(false) {}
|
||||
|
||||
template<typename MatType>
|
||||
explicit DiagonalPreconditioner(const MatType& mat) : m_invdiag(mat.cols())
|
||||
{
|
||||
compute(mat);
|
||||
}
|
||||
|
||||
Index rows() const { return m_invdiag.size(); }
|
||||
Index cols() const { return m_invdiag.size(); }
|
||||
|
||||
template<typename MatType>
|
||||
DiagonalPreconditioner& analyzePattern(const MatType& )
|
||||
{
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename MatType>
|
||||
DiagonalPreconditioner& factorize(const MatType& mat)
|
||||
{
|
||||
m_invdiag.resize(mat.cols());
|
||||
for(int j=0; j<mat.outerSize(); ++j)
|
||||
{
|
||||
typename MatType::InnerIterator it(mat,j);
|
||||
while(it && it.index()!=j) ++it;
|
||||
if(it && it.index()==j && it.value()!=Scalar(0))
|
||||
m_invdiag(j) = Scalar(1)/it.value();
|
||||
else
|
||||
m_invdiag(j) = Scalar(1);
|
||||
}
|
||||
m_isInitialized = true;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename MatType>
|
||||
DiagonalPreconditioner& compute(const MatType& mat)
|
||||
{
|
||||
return factorize(mat);
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
template<typename Rhs, typename Dest>
|
||||
void _solve_impl(const Rhs& b, Dest& x) const
|
||||
{
|
||||
x = m_invdiag.array() * b.array() ;
|
||||
}
|
||||
|
||||
template<typename Rhs> inline const Solve<DiagonalPreconditioner, Rhs>
|
||||
solve(const MatrixBase<Rhs>& b) const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "DiagonalPreconditioner is not initialized.");
|
||||
eigen_assert(m_invdiag.size()==b.rows()
|
||||
&& "DiagonalPreconditioner::solve(): invalid number of rows of the right hand side matrix b");
|
||||
return Solve<DiagonalPreconditioner, Rhs>(*this, b.derived());
|
||||
}
|
||||
|
||||
ComputationInfo info() { return Success; }
|
||||
|
||||
protected:
|
||||
Vector m_invdiag;
|
||||
bool m_isInitialized;
|
||||
};
|
||||
|
||||
/** \ingroup IterativeLinearSolvers_Module
|
||||
* \brief Jacobi preconditioner for LeastSquaresConjugateGradient
|
||||
*
|
||||
* This class allows to approximately solve for A' A x = A' b problems assuming A' A is a diagonal matrix.
|
||||
* In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for:
|
||||
\code
|
||||
(A.adjoint() * A).diagonal().asDiagonal() * x = b
|
||||
\endcode
|
||||
*
|
||||
* \tparam _Scalar the type of the scalar.
|
||||
*
|
||||
* \implsparsesolverconcept
|
||||
*
|
||||
* The diagonal entries are pre-inverted and stored into a dense vector.
|
||||
*
|
||||
* \sa class LeastSquaresConjugateGradient, class DiagonalPreconditioner
|
||||
*/
|
||||
template <typename _Scalar>
|
||||
class LeastSquareDiagonalPreconditioner : public DiagonalPreconditioner<_Scalar>
|
||||
{
|
||||
typedef _Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef DiagonalPreconditioner<_Scalar> Base;
|
||||
using Base::m_invdiag;
|
||||
public:
|
||||
|
||||
LeastSquareDiagonalPreconditioner() : Base() {}
|
||||
|
||||
template<typename MatType>
|
||||
explicit LeastSquareDiagonalPreconditioner(const MatType& mat) : Base()
|
||||
{
|
||||
compute(mat);
|
||||
}
|
||||
|
||||
template<typename MatType>
|
||||
LeastSquareDiagonalPreconditioner& analyzePattern(const MatType& )
|
||||
{
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename MatType>
|
||||
LeastSquareDiagonalPreconditioner& factorize(const MatType& mat)
|
||||
{
|
||||
// Compute the inverse squared-norm of each column of mat
|
||||
m_invdiag.resize(mat.cols());
|
||||
if(MatType::IsRowMajor)
|
||||
{
|
||||
m_invdiag.setZero();
|
||||
for(Index j=0; j<mat.outerSize(); ++j)
|
||||
{
|
||||
for(typename MatType::InnerIterator it(mat,j); it; ++it)
|
||||
m_invdiag(it.index()) += numext::abs2(it.value());
|
||||
}
|
||||
for(Index j=0; j<mat.cols(); ++j)
|
||||
if(numext::real(m_invdiag(j))>RealScalar(0))
|
||||
m_invdiag(j) = RealScalar(1)/numext::real(m_invdiag(j));
|
||||
}
|
||||
else
|
||||
{
|
||||
for(Index j=0; j<mat.outerSize(); ++j)
|
||||
{
|
||||
RealScalar sum = mat.col(j).squaredNorm();
|
||||
if(sum>RealScalar(0))
|
||||
m_invdiag(j) = RealScalar(1)/sum;
|
||||
else
|
||||
m_invdiag(j) = RealScalar(1);
|
||||
}
|
||||
}
|
||||
Base::m_isInitialized = true;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename MatType>
|
||||
LeastSquareDiagonalPreconditioner& compute(const MatType& mat)
|
||||
{
|
||||
return factorize(mat);
|
||||
}
|
||||
|
||||
ComputationInfo info() { return Success; }
|
||||
|
||||
protected:
|
||||
};
|
||||
|
||||
/** \ingroup IterativeLinearSolvers_Module
|
||||
* \brief A naive preconditioner which approximates any matrix as the identity matrix
|
||||
*
|
||||
* \implsparsesolverconcept
|
||||
*
|
||||
* \sa class DiagonalPreconditioner
|
||||
*/
|
||||
class IdentityPreconditioner
|
||||
{
|
||||
public:
|
||||
|
||||
IdentityPreconditioner() {}
|
||||
|
||||
template<typename MatrixType>
|
||||
explicit IdentityPreconditioner(const MatrixType& ) {}
|
||||
|
||||
template<typename MatrixType>
|
||||
IdentityPreconditioner& analyzePattern(const MatrixType& ) { return *this; }
|
||||
|
||||
template<typename MatrixType>
|
||||
IdentityPreconditioner& factorize(const MatrixType& ) { return *this; }
|
||||
|
||||
template<typename MatrixType>
|
||||
IdentityPreconditioner& compute(const MatrixType& ) { return *this; }
|
||||
|
||||
template<typename Rhs>
|
||||
inline const Rhs& solve(const Rhs& b) const { return b; }
|
||||
|
||||
ComputationInfo info() { return Success; }
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_BASIC_PRECONDITIONERS_H
|
||||
228
external/include/eigen3/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h
vendored
Normal file
228
external/include/eigen3/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h
vendored
Normal file
@@ -0,0 +1,228 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_BICGSTAB_H
|
||||
#define EIGEN_BICGSTAB_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
/** \internal Low-level bi conjugate gradient stabilized algorithm
|
||||
* \param mat The matrix A
|
||||
* \param rhs The right hand side vector b
|
||||
* \param x On input and initial solution, on output the computed solution.
|
||||
* \param precond A preconditioner being able to efficiently solve for an
|
||||
* approximation of Ax=b (regardless of b)
|
||||
* \param iters On input the max number of iteration, on output the number of performed iterations.
|
||||
* \param tol_error On input the tolerance error, on output an estimation of the relative error.
|
||||
* \return false in the case of numerical issue, for example a break down of BiCGSTAB.
|
||||
*/
|
||||
template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
|
||||
bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
|
||||
const Preconditioner& precond, Index& iters,
|
||||
typename Dest::RealScalar& tol_error)
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::abs;
|
||||
typedef typename Dest::RealScalar RealScalar;
|
||||
typedef typename Dest::Scalar Scalar;
|
||||
typedef Matrix<Scalar,Dynamic,1> VectorType;
|
||||
RealScalar tol = tol_error;
|
||||
Index maxIters = iters;
|
||||
|
||||
Index n = mat.cols();
|
||||
VectorType r = rhs - mat * x;
|
||||
VectorType r0 = r;
|
||||
|
||||
RealScalar r0_sqnorm = r0.squaredNorm();
|
||||
RealScalar rhs_sqnorm = rhs.squaredNorm();
|
||||
if(rhs_sqnorm == 0)
|
||||
{
|
||||
x.setZero();
|
||||
return true;
|
||||
}
|
||||
Scalar rho = 1;
|
||||
Scalar alpha = 1;
|
||||
Scalar w = 1;
|
||||
|
||||
VectorType v = VectorType::Zero(n), p = VectorType::Zero(n);
|
||||
VectorType y(n), z(n);
|
||||
VectorType kt(n), ks(n);
|
||||
|
||||
VectorType s(n), t(n);
|
||||
|
||||
RealScalar tol2 = tol*tol*rhs_sqnorm;
|
||||
RealScalar eps2 = NumTraits<Scalar>::epsilon()*NumTraits<Scalar>::epsilon();
|
||||
Index i = 0;
|
||||
Index restarts = 0;
|
||||
|
||||
while ( r.squaredNorm() > tol2 && i<maxIters )
|
||||
{
|
||||
Scalar rho_old = rho;
|
||||
|
||||
rho = r0.dot(r);
|
||||
if (abs(rho) < eps2*r0_sqnorm)
|
||||
{
|
||||
// The new residual vector became too orthogonal to the arbitrarily chosen direction r0
|
||||
// Let's restart with a new r0:
|
||||
r = rhs - mat * x;
|
||||
r0 = r;
|
||||
rho = r0_sqnorm = r.squaredNorm();
|
||||
if(restarts++ == 0)
|
||||
i = 0;
|
||||
}
|
||||
Scalar beta = (rho/rho_old) * (alpha / w);
|
||||
p = r + beta * (p - w * v);
|
||||
|
||||
y = precond.solve(p);
|
||||
|
||||
v.noalias() = mat * y;
|
||||
|
||||
alpha = rho / r0.dot(v);
|
||||
s = r - alpha * v;
|
||||
|
||||
z = precond.solve(s);
|
||||
t.noalias() = mat * z;
|
||||
|
||||
RealScalar tmp = t.squaredNorm();
|
||||
if(tmp>RealScalar(0))
|
||||
w = t.dot(s) / tmp;
|
||||
else
|
||||
w = Scalar(0);
|
||||
x += alpha * y + w * z;
|
||||
r = s - w * t;
|
||||
++i;
|
||||
}
|
||||
tol_error = sqrt(r.squaredNorm()/rhs_sqnorm);
|
||||
iters = i;
|
||||
return true;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template< typename _MatrixType,
|
||||
typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
|
||||
class BiCGSTAB;
|
||||
|
||||
namespace internal {
|
||||
|
||||
template< typename _MatrixType, typename _Preconditioner>
|
||||
struct traits<BiCGSTAB<_MatrixType,_Preconditioner> >
|
||||
{
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef _Preconditioner Preconditioner;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
/** \ingroup IterativeLinearSolvers_Module
|
||||
* \brief A bi conjugate gradient stabilized solver for sparse square problems
|
||||
*
|
||||
* This class allows to solve for A.x = b sparse linear problems using a bi conjugate gradient
|
||||
* stabilized algorithm. The vectors x and b can be either dense or sparse.
|
||||
*
|
||||
* \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
|
||||
* \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
|
||||
*
|
||||
* \implsparsesolverconcept
|
||||
*
|
||||
* The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
|
||||
* and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
|
||||
* and NumTraits<Scalar>::epsilon() for the tolerance.
|
||||
*
|
||||
* The tolerance corresponds to the relative residual error: |Ax-b|/|b|
|
||||
*
|
||||
* \b Performance: when using sparse matrices, best performance is achied for a row-major sparse matrix format.
|
||||
* Moreover, in this case multi-threading can be exploited if the user code is compiled with OpenMP enabled.
|
||||
* See \ref TopicMultiThreading for details.
|
||||
*
|
||||
* This class can be used as the direct solver classes. Here is a typical usage example:
|
||||
* \include BiCGSTAB_simple.cpp
|
||||
*
|
||||
* By default the iterations start with x=0 as an initial guess of the solution.
|
||||
* One can control the start using the solveWithGuess() method.
|
||||
*
|
||||
* BiCGSTAB can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
|
||||
*
|
||||
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
|
||||
*/
|
||||
template< typename _MatrixType, typename _Preconditioner>
|
||||
class BiCGSTAB : public IterativeSolverBase<BiCGSTAB<_MatrixType,_Preconditioner> >
|
||||
{
|
||||
typedef IterativeSolverBase<BiCGSTAB> Base;
|
||||
using Base::matrix;
|
||||
using Base::m_error;
|
||||
using Base::m_iterations;
|
||||
using Base::m_info;
|
||||
using Base::m_isInitialized;
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef _Preconditioner Preconditioner;
|
||||
|
||||
public:
|
||||
|
||||
/** Default constructor. */
|
||||
BiCGSTAB() : Base() {}
|
||||
|
||||
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
|
||||
*
|
||||
* This constructor is a shortcut for the default constructor followed
|
||||
* by a call to compute().
|
||||
*
|
||||
* \warning this class stores a reference to the matrix A as well as some
|
||||
* precomputed values that depend on it. Therefore, if \a A is changed
|
||||
* this class becomes invalid. Call compute() to update it with the new
|
||||
* matrix A, or modify a copy of A.
|
||||
*/
|
||||
template<typename MatrixDerived>
|
||||
explicit BiCGSTAB(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
|
||||
|
||||
~BiCGSTAB() {}
|
||||
|
||||
/** \internal */
|
||||
template<typename Rhs,typename Dest>
|
||||
void _solve_with_guess_impl(const Rhs& b, Dest& x) const
|
||||
{
|
||||
bool failed = false;
|
||||
for(Index j=0; j<b.cols(); ++j)
|
||||
{
|
||||
m_iterations = Base::maxIterations();
|
||||
m_error = Base::m_tolerance;
|
||||
|
||||
typename Dest::ColXpr xj(x,j);
|
||||
if(!internal::bicgstab(matrix(), b.col(j), xj, Base::m_preconditioner, m_iterations, m_error))
|
||||
failed = true;
|
||||
}
|
||||
m_info = failed ? NumericalIssue
|
||||
: m_error <= Base::m_tolerance ? Success
|
||||
: NoConvergence;
|
||||
m_isInitialized = true;
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
using Base::_solve_impl;
|
||||
template<typename Rhs,typename Dest>
|
||||
void _solve_impl(const MatrixBase<Rhs>& b, Dest& x) const
|
||||
{
|
||||
x.resize(this->rows(),b.cols());
|
||||
x.setZero();
|
||||
_solve_with_guess_impl(b,x);
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_BICGSTAB_H
|
||||
246
external/include/eigen3/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h
vendored
Normal file
246
external/include/eigen3/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h
vendored
Normal file
@@ -0,0 +1,246 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_CONJUGATE_GRADIENT_H
|
||||
#define EIGEN_CONJUGATE_GRADIENT_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
/** \internal Low-level conjugate gradient algorithm
|
||||
* \param mat The matrix A
|
||||
* \param rhs The right hand side vector b
|
||||
* \param x On input and initial solution, on output the computed solution.
|
||||
* \param precond A preconditioner being able to efficiently solve for an
|
||||
* approximation of Ax=b (regardless of b)
|
||||
* \param iters On input the max number of iteration, on output the number of performed iterations.
|
||||
* \param tol_error On input the tolerance error, on output an estimation of the relative error.
|
||||
*/
|
||||
template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
|
||||
EIGEN_DONT_INLINE
|
||||
void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
|
||||
const Preconditioner& precond, Index& iters,
|
||||
typename Dest::RealScalar& tol_error)
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::abs;
|
||||
typedef typename Dest::RealScalar RealScalar;
|
||||
typedef typename Dest::Scalar Scalar;
|
||||
typedef Matrix<Scalar,Dynamic,1> VectorType;
|
||||
|
||||
RealScalar tol = tol_error;
|
||||
Index maxIters = iters;
|
||||
|
||||
Index n = mat.cols();
|
||||
|
||||
VectorType residual = rhs - mat * x; //initial residual
|
||||
|
||||
RealScalar rhsNorm2 = rhs.squaredNorm();
|
||||
if(rhsNorm2 == 0)
|
||||
{
|
||||
x.setZero();
|
||||
iters = 0;
|
||||
tol_error = 0;
|
||||
return;
|
||||
}
|
||||
const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
|
||||
RealScalar threshold = numext::maxi(tol*tol*rhsNorm2,considerAsZero);
|
||||
RealScalar residualNorm2 = residual.squaredNorm();
|
||||
if (residualNorm2 < threshold)
|
||||
{
|
||||
iters = 0;
|
||||
tol_error = sqrt(residualNorm2 / rhsNorm2);
|
||||
return;
|
||||
}
|
||||
|
||||
VectorType p(n);
|
||||
p = precond.solve(residual); // initial search direction
|
||||
|
||||
VectorType z(n), tmp(n);
|
||||
RealScalar absNew = numext::real(residual.dot(p)); // the square of the absolute value of r scaled by invM
|
||||
Index i = 0;
|
||||
while(i < maxIters)
|
||||
{
|
||||
tmp.noalias() = mat * p; // the bottleneck of the algorithm
|
||||
|
||||
Scalar alpha = absNew / p.dot(tmp); // the amount we travel on dir
|
||||
x += alpha * p; // update solution
|
||||
residual -= alpha * tmp; // update residual
|
||||
|
||||
residualNorm2 = residual.squaredNorm();
|
||||
if(residualNorm2 < threshold)
|
||||
break;
|
||||
|
||||
z = precond.solve(residual); // approximately solve for "A z = residual"
|
||||
|
||||
RealScalar absOld = absNew;
|
||||
absNew = numext::real(residual.dot(z)); // update the absolute value of r
|
||||
RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction
|
||||
p = z + beta * p; // update search direction
|
||||
i++;
|
||||
}
|
||||
tol_error = sqrt(residualNorm2 / rhsNorm2);
|
||||
iters = i;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template< typename _MatrixType, int _UpLo=Lower,
|
||||
typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
|
||||
class ConjugateGradient;
|
||||
|
||||
namespace internal {
|
||||
|
||||
template< typename _MatrixType, int _UpLo, typename _Preconditioner>
|
||||
struct traits<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
|
||||
{
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef _Preconditioner Preconditioner;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
/** \ingroup IterativeLinearSolvers_Module
|
||||
* \brief A conjugate gradient solver for sparse (or dense) self-adjoint problems
|
||||
*
|
||||
* This class allows to solve for A.x = b linear problems using an iterative conjugate gradient algorithm.
|
||||
* The matrix A must be selfadjoint. The matrix A and the vectors x and b can be either dense or sparse.
|
||||
*
|
||||
* \tparam _MatrixType the type of the matrix A, can be a dense or a sparse matrix.
|
||||
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower,
|
||||
* \c Upper, or \c Lower|Upper in which the full matrix entries will be considered.
|
||||
* Default is \c Lower, best performance is \c Lower|Upper.
|
||||
* \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
|
||||
*
|
||||
* \implsparsesolverconcept
|
||||
*
|
||||
* The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
|
||||
* and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
|
||||
* and NumTraits<Scalar>::epsilon() for the tolerance.
|
||||
*
|
||||
* The tolerance corresponds to the relative residual error: |Ax-b|/|b|
|
||||
*
|
||||
* \b Performance: Even though the default value of \c _UpLo is \c Lower, significantly higher performance is
|
||||
* achieved when using a complete matrix and \b Lower|Upper as the \a _UpLo template parameter. Moreover, in this
|
||||
* case multi-threading can be exploited if the user code is compiled with OpenMP enabled.
|
||||
* See \ref TopicMultiThreading for details.
|
||||
*
|
||||
* This class can be used as the direct solver classes. Here is a typical usage example:
|
||||
\code
|
||||
int n = 10000;
|
||||
VectorXd x(n), b(n);
|
||||
SparseMatrix<double> A(n,n);
|
||||
// fill A and b
|
||||
ConjugateGradient<SparseMatrix<double>, Lower|Upper> cg;
|
||||
cg.compute(A);
|
||||
x = cg.solve(b);
|
||||
std::cout << "#iterations: " << cg.iterations() << std::endl;
|
||||
std::cout << "estimated error: " << cg.error() << std::endl;
|
||||
// update b, and solve again
|
||||
x = cg.solve(b);
|
||||
\endcode
|
||||
*
|
||||
* By default the iterations start with x=0 as an initial guess of the solution.
|
||||
* One can control the start using the solveWithGuess() method.
|
||||
*
|
||||
* ConjugateGradient can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
|
||||
*
|
||||
* \sa class LeastSquaresConjugateGradient, class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
|
||||
*/
|
||||
template< typename _MatrixType, int _UpLo, typename _Preconditioner>
|
||||
class ConjugateGradient : public IterativeSolverBase<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
|
||||
{
|
||||
typedef IterativeSolverBase<ConjugateGradient> Base;
|
||||
using Base::matrix;
|
||||
using Base::m_error;
|
||||
using Base::m_iterations;
|
||||
using Base::m_info;
|
||||
using Base::m_isInitialized;
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef _Preconditioner Preconditioner;
|
||||
|
||||
enum {
|
||||
UpLo = _UpLo
|
||||
};
|
||||
|
||||
public:
|
||||
|
||||
/** Default constructor. */
|
||||
ConjugateGradient() : Base() {}
|
||||
|
||||
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
|
||||
*
|
||||
* This constructor is a shortcut for the default constructor followed
|
||||
* by a call to compute().
|
||||
*
|
||||
* \warning this class stores a reference to the matrix A as well as some
|
||||
* precomputed values that depend on it. Therefore, if \a A is changed
|
||||
* this class becomes invalid. Call compute() to update it with the new
|
||||
* matrix A, or modify a copy of A.
|
||||
*/
|
||||
template<typename MatrixDerived>
|
||||
explicit ConjugateGradient(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
|
||||
|
||||
~ConjugateGradient() {}
|
||||
|
||||
/** \internal */
|
||||
template<typename Rhs,typename Dest>
|
||||
void _solve_with_guess_impl(const Rhs& b, Dest& x) const
|
||||
{
|
||||
typedef typename Base::MatrixWrapper MatrixWrapper;
|
||||
typedef typename Base::ActualMatrixType ActualMatrixType;
|
||||
enum {
|
||||
TransposeInput = (!MatrixWrapper::MatrixFree)
|
||||
&& (UpLo==(Lower|Upper))
|
||||
&& (!MatrixType::IsRowMajor)
|
||||
&& (!NumTraits<Scalar>::IsComplex)
|
||||
};
|
||||
typedef typename internal::conditional<TransposeInput,Transpose<const ActualMatrixType>, ActualMatrixType const&>::type RowMajorWrapper;
|
||||
EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(MatrixWrapper::MatrixFree,UpLo==(Lower|Upper)),MATRIX_FREE_CONJUGATE_GRADIENT_IS_COMPATIBLE_WITH_UPPER_UNION_LOWER_MODE_ONLY);
|
||||
typedef typename internal::conditional<UpLo==(Lower|Upper),
|
||||
RowMajorWrapper,
|
||||
typename MatrixWrapper::template ConstSelfAdjointViewReturnType<UpLo>::Type
|
||||
>::type SelfAdjointWrapper;
|
||||
m_iterations = Base::maxIterations();
|
||||
m_error = Base::m_tolerance;
|
||||
|
||||
for(Index j=0; j<b.cols(); ++j)
|
||||
{
|
||||
m_iterations = Base::maxIterations();
|
||||
m_error = Base::m_tolerance;
|
||||
|
||||
typename Dest::ColXpr xj(x,j);
|
||||
RowMajorWrapper row_mat(matrix());
|
||||
internal::conjugate_gradient(SelfAdjointWrapper(row_mat), b.col(j), xj, Base::m_preconditioner, m_iterations, m_error);
|
||||
}
|
||||
|
||||
m_isInitialized = true;
|
||||
m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
using Base::_solve_impl;
|
||||
template<typename Rhs,typename Dest>
|
||||
void _solve_impl(const MatrixBase<Rhs>& b, Dest& x) const
|
||||
{
|
||||
x.setZero();
|
||||
_solve_with_guess_impl(b.derived(),x);
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_CONJUGATE_GRADIENT_H
|
||||
400
external/include/eigen3/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h
vendored
Normal file
400
external/include/eigen3/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h
vendored
Normal file
@@ -0,0 +1,400 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
|
||||
// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_INCOMPLETE_CHOlESKY_H
|
||||
#define EIGEN_INCOMPLETE_CHOlESKY_H
|
||||
|
||||
#include <vector>
|
||||
#include <list>
|
||||
|
||||
namespace Eigen {
|
||||
/**
|
||||
* \brief Modified Incomplete Cholesky with dual threshold
|
||||
*
|
||||
* References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
|
||||
* Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999
|
||||
*
|
||||
* \tparam Scalar the scalar type of the input matrices
|
||||
* \tparam _UpLo The triangular part that will be used for the computations. It can be Lower
|
||||
* or Upper. Default is Lower.
|
||||
* \tparam _OrderingType The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<int>,
|
||||
* unless EIGEN_MPL2_ONLY is defined, in which case the default is NaturalOrdering<int>.
|
||||
*
|
||||
* \implsparsesolverconcept
|
||||
*
|
||||
* It performs the following incomplete factorization: \f$ S P A P' S \approx L L' \f$
|
||||
* where L is a lower triangular factor, S is a diagonal scaling matrix, and P is a
|
||||
* fill-in reducing permutation as computed by the ordering method.
|
||||
*
|
||||
* \b Shifting \b strategy: Let \f$ B = S P A P' S \f$ be the scaled matrix on which the factorization is carried out,
|
||||
* and \f$ \beta \f$ be the minimum value of the diagonal. If \f$ \beta > 0 \f$ then, the factorization is directly performed
|
||||
* on the matrix B. Otherwise, the factorization is performed on the shifted matrix \f$ B + (\sigma+|\beta| I \f$ where
|
||||
* \f$ \sigma \f$ is the initial shift value as returned and set by setInitialShift() method. The default value is \f$ \sigma = 10^{-3} \f$.
|
||||
* If the factorization fails, then the shift in doubled until it succeed or a maximum of ten attempts. If it still fails, as returned by
|
||||
* the info() method, then you can either increase the initial shift, or better use another preconditioning technique.
|
||||
*
|
||||
*/
|
||||
template <typename Scalar, int _UpLo = Lower, typename _OrderingType =
|
||||
#ifndef EIGEN_MPL2_ONLY
|
||||
AMDOrdering<int>
|
||||
#else
|
||||
NaturalOrdering<int>
|
||||
#endif
|
||||
>
|
||||
class IncompleteCholesky : public SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> >
|
||||
{
|
||||
protected:
|
||||
typedef SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> > Base;
|
||||
using Base::m_isInitialized;
|
||||
public:
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef _OrderingType OrderingType;
|
||||
typedef typename OrderingType::PermutationType PermutationType;
|
||||
typedef typename PermutationType::StorageIndex StorageIndex;
|
||||
typedef SparseMatrix<Scalar,ColMajor,StorageIndex> FactorType;
|
||||
typedef Matrix<Scalar,Dynamic,1> VectorSx;
|
||||
typedef Matrix<RealScalar,Dynamic,1> VectorRx;
|
||||
typedef Matrix<StorageIndex,Dynamic, 1> VectorIx;
|
||||
typedef std::vector<std::list<StorageIndex> > VectorList;
|
||||
enum { UpLo = _UpLo };
|
||||
enum {
|
||||
ColsAtCompileTime = Dynamic,
|
||||
MaxColsAtCompileTime = Dynamic
|
||||
};
|
||||
public:
|
||||
|
||||
/** Default constructor leaving the object in a partly non-initialized stage.
|
||||
*
|
||||
* You must call compute() or the pair analyzePattern()/factorize() to make it valid.
|
||||
*
|
||||
* \sa IncompleteCholesky(const MatrixType&)
|
||||
*/
|
||||
IncompleteCholesky() : m_initialShift(1e-3),m_factorizationIsOk(false) {}
|
||||
|
||||
/** Constructor computing the incomplete factorization for the given matrix \a matrix.
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
IncompleteCholesky(const MatrixType& matrix) : m_initialShift(1e-3),m_factorizationIsOk(false)
|
||||
{
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
/** \returns number of rows of the factored matrix */
|
||||
Index rows() const { return m_L.rows(); }
|
||||
|
||||
/** \returns number of columns of the factored matrix */
|
||||
Index cols() const { return m_L.cols(); }
|
||||
|
||||
|
||||
/** \brief Reports whether previous computation was successful.
|
||||
*
|
||||
* It triggers an assertion if \c *this has not been initialized through the respective constructor,
|
||||
* or a call to compute() or analyzePattern().
|
||||
*
|
||||
* \returns \c Success if computation was successful,
|
||||
* \c NumericalIssue if the matrix appears to be negative.
|
||||
*/
|
||||
ComputationInfo info() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "IncompleteCholesky is not initialized.");
|
||||
return m_info;
|
||||
}
|
||||
|
||||
/** \brief Set the initial shift parameter \f$ \sigma \f$.
|
||||
*/
|
||||
void setInitialShift(RealScalar shift) { m_initialShift = shift; }
|
||||
|
||||
/** \brief Computes the fill reducing permutation vector using the sparsity pattern of \a mat
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
void analyzePattern(const MatrixType& mat)
|
||||
{
|
||||
OrderingType ord;
|
||||
PermutationType pinv;
|
||||
ord(mat.template selfadjointView<UpLo>(), pinv);
|
||||
if(pinv.size()>0) m_perm = pinv.inverse();
|
||||
else m_perm.resize(0);
|
||||
m_L.resize(mat.rows(), mat.cols());
|
||||
m_analysisIsOk = true;
|
||||
m_isInitialized = true;
|
||||
m_info = Success;
|
||||
}
|
||||
|
||||
/** \brief Performs the numerical factorization of the input matrix \a mat
|
||||
*
|
||||
* The method analyzePattern() or compute() must have been called beforehand
|
||||
* with a matrix having the same pattern.
|
||||
*
|
||||
* \sa compute(), analyzePattern()
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
void factorize(const MatrixType& mat);
|
||||
|
||||
/** Computes or re-computes the incomplete Cholesky factorization of the input matrix \a mat
|
||||
*
|
||||
* It is a shortcut for a sequential call to the analyzePattern() and factorize() methods.
|
||||
*
|
||||
* \sa analyzePattern(), factorize()
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
void compute(const MatrixType& mat)
|
||||
{
|
||||
analyzePattern(mat);
|
||||
factorize(mat);
|
||||
}
|
||||
|
||||
// internal
|
||||
template<typename Rhs, typename Dest>
|
||||
void _solve_impl(const Rhs& b, Dest& x) const
|
||||
{
|
||||
eigen_assert(m_factorizationIsOk && "factorize() should be called first");
|
||||
if (m_perm.rows() == b.rows()) x = m_perm * b;
|
||||
else x = b;
|
||||
x = m_scale.asDiagonal() * x;
|
||||
x = m_L.template triangularView<Lower>().solve(x);
|
||||
x = m_L.adjoint().template triangularView<Upper>().solve(x);
|
||||
x = m_scale.asDiagonal() * x;
|
||||
if (m_perm.rows() == b.rows())
|
||||
x = m_perm.inverse() * x;
|
||||
}
|
||||
|
||||
/** \returns the sparse lower triangular factor L */
|
||||
const FactorType& matrixL() const { eigen_assert("m_factorizationIsOk"); return m_L; }
|
||||
|
||||
/** \returns a vector representing the scaling factor S */
|
||||
const VectorRx& scalingS() const { eigen_assert("m_factorizationIsOk"); return m_scale; }
|
||||
|
||||
/** \returns the fill-in reducing permutation P (can be empty for a natural ordering) */
|
||||
const PermutationType& permutationP() const { eigen_assert("m_analysisIsOk"); return m_perm; }
|
||||
|
||||
protected:
|
||||
FactorType m_L; // The lower part stored in CSC
|
||||
VectorRx m_scale; // The vector for scaling the matrix
|
||||
RealScalar m_initialShift; // The initial shift parameter
|
||||
bool m_analysisIsOk;
|
||||
bool m_factorizationIsOk;
|
||||
ComputationInfo m_info;
|
||||
PermutationType m_perm;
|
||||
|
||||
private:
|
||||
inline void updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol);
|
||||
};
|
||||
|
||||
// Based on the following paper:
|
||||
// C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
|
||||
// Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999
|
||||
// http://ftp.mcs.anl.gov/pub/tech_reports/reports/P682.pdf
|
||||
template<typename Scalar, int _UpLo, typename OrderingType>
|
||||
template<typename _MatrixType>
|
||||
void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType& mat)
|
||||
{
|
||||
using std::sqrt;
|
||||
eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
|
||||
|
||||
// Dropping strategy : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added
|
||||
|
||||
// Apply the fill-reducing permutation computed in analyzePattern()
|
||||
if (m_perm.rows() == mat.rows() ) // To detect the null permutation
|
||||
{
|
||||
// The temporary is needed to make sure that the diagonal entry is properly sorted
|
||||
FactorType tmp(mat.rows(), mat.cols());
|
||||
tmp = mat.template selfadjointView<_UpLo>().twistedBy(m_perm);
|
||||
m_L.template selfadjointView<Lower>() = tmp.template selfadjointView<Lower>();
|
||||
}
|
||||
else
|
||||
{
|
||||
m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>();
|
||||
}
|
||||
|
||||
Index n = m_L.cols();
|
||||
Index nnz = m_L.nonZeros();
|
||||
Map<VectorSx> vals(m_L.valuePtr(), nnz); //values
|
||||
Map<VectorIx> rowIdx(m_L.innerIndexPtr(), nnz); //Row indices
|
||||
Map<VectorIx> colPtr( m_L.outerIndexPtr(), n+1); // Pointer to the beginning of each row
|
||||
VectorIx firstElt(n-1); // for each j, points to the next entry in vals that will be used in the factorization
|
||||
VectorList listCol(n); // listCol(j) is a linked list of columns to update column j
|
||||
VectorSx col_vals(n); // Store a nonzero values in each column
|
||||
VectorIx col_irow(n); // Row indices of nonzero elements in each column
|
||||
VectorIx col_pattern(n);
|
||||
col_pattern.fill(-1);
|
||||
StorageIndex col_nnz;
|
||||
|
||||
|
||||
// Computes the scaling factors
|
||||
m_scale.resize(n);
|
||||
m_scale.setZero();
|
||||
for (Index j = 0; j < n; j++)
|
||||
for (Index k = colPtr[j]; k < colPtr[j+1]; k++)
|
||||
{
|
||||
m_scale(j) += numext::abs2(vals(k));
|
||||
if(rowIdx[k]!=j)
|
||||
m_scale(rowIdx[k]) += numext::abs2(vals(k));
|
||||
}
|
||||
|
||||
m_scale = m_scale.cwiseSqrt().cwiseSqrt();
|
||||
|
||||
for (Index j = 0; j < n; ++j)
|
||||
if(m_scale(j)>(std::numeric_limits<RealScalar>::min)())
|
||||
m_scale(j) = RealScalar(1)/m_scale(j);
|
||||
else
|
||||
m_scale(j) = 1;
|
||||
|
||||
// TODO disable scaling if not needed, i.e., if it is roughly uniform? (this will make solve() faster)
|
||||
|
||||
// Scale and compute the shift for the matrix
|
||||
RealScalar mindiag = NumTraits<RealScalar>::highest();
|
||||
for (Index j = 0; j < n; j++)
|
||||
{
|
||||
for (Index k = colPtr[j]; k < colPtr[j+1]; k++)
|
||||
vals[k] *= (m_scale(j)*m_scale(rowIdx[k]));
|
||||
eigen_internal_assert(rowIdx[colPtr[j]]==j && "IncompleteCholesky: only the lower triangular part must be stored");
|
||||
mindiag = numext::mini(numext::real(vals[colPtr[j]]), mindiag);
|
||||
}
|
||||
|
||||
FactorType L_save = m_L;
|
||||
|
||||
RealScalar shift = 0;
|
||||
if(mindiag <= RealScalar(0.))
|
||||
shift = m_initialShift - mindiag;
|
||||
|
||||
m_info = NumericalIssue;
|
||||
|
||||
// Try to perform the incomplete factorization using the current shift
|
||||
int iter = 0;
|
||||
do
|
||||
{
|
||||
// Apply the shift to the diagonal elements of the matrix
|
||||
for (Index j = 0; j < n; j++)
|
||||
vals[colPtr[j]] += shift;
|
||||
|
||||
// jki version of the Cholesky factorization
|
||||
Index j=0;
|
||||
for (; j < n; ++j)
|
||||
{
|
||||
// Left-looking factorization of the j-th column
|
||||
// First, load the j-th column into col_vals
|
||||
Scalar diag = vals[colPtr[j]]; // It is assumed that only the lower part is stored
|
||||
col_nnz = 0;
|
||||
for (Index i = colPtr[j] + 1; i < colPtr[j+1]; i++)
|
||||
{
|
||||
StorageIndex l = rowIdx[i];
|
||||
col_vals(col_nnz) = vals[i];
|
||||
col_irow(col_nnz) = l;
|
||||
col_pattern(l) = col_nnz;
|
||||
col_nnz++;
|
||||
}
|
||||
{
|
||||
typename std::list<StorageIndex>::iterator k;
|
||||
// Browse all previous columns that will update column j
|
||||
for(k = listCol[j].begin(); k != listCol[j].end(); k++)
|
||||
{
|
||||
Index jk = firstElt(*k); // First element to use in the column
|
||||
eigen_internal_assert(rowIdx[jk]==j);
|
||||
Scalar v_j_jk = numext::conj(vals[jk]);
|
||||
|
||||
jk += 1;
|
||||
for (Index i = jk; i < colPtr[*k+1]; i++)
|
||||
{
|
||||
StorageIndex l = rowIdx[i];
|
||||
if(col_pattern[l]<0)
|
||||
{
|
||||
col_vals(col_nnz) = vals[i] * v_j_jk;
|
||||
col_irow[col_nnz] = l;
|
||||
col_pattern(l) = col_nnz;
|
||||
col_nnz++;
|
||||
}
|
||||
else
|
||||
col_vals(col_pattern[l]) -= vals[i] * v_j_jk;
|
||||
}
|
||||
updateList(colPtr,rowIdx,vals, *k, jk, firstElt, listCol);
|
||||
}
|
||||
}
|
||||
|
||||
// Scale the current column
|
||||
if(numext::real(diag) <= 0)
|
||||
{
|
||||
if(++iter>=10)
|
||||
return;
|
||||
|
||||
// increase shift
|
||||
shift = numext::maxi(m_initialShift,RealScalar(2)*shift);
|
||||
// restore m_L, col_pattern, and listCol
|
||||
vals = Map<const VectorSx>(L_save.valuePtr(), nnz);
|
||||
rowIdx = Map<const VectorIx>(L_save.innerIndexPtr(), nnz);
|
||||
colPtr = Map<const VectorIx>(L_save.outerIndexPtr(), n+1);
|
||||
col_pattern.fill(-1);
|
||||
for(Index i=0; i<n; ++i)
|
||||
listCol[i].clear();
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
RealScalar rdiag = sqrt(numext::real(diag));
|
||||
vals[colPtr[j]] = rdiag;
|
||||
for (Index k = 0; k<col_nnz; ++k)
|
||||
{
|
||||
Index i = col_irow[k];
|
||||
//Scale
|
||||
col_vals(k) /= rdiag;
|
||||
//Update the remaining diagonals with col_vals
|
||||
vals[colPtr[i]] -= numext::abs2(col_vals(k));
|
||||
}
|
||||
// Select the largest p elements
|
||||
// p is the original number of elements in the column (without the diagonal)
|
||||
Index p = colPtr[j+1] - colPtr[j] - 1 ;
|
||||
Ref<VectorSx> cvals = col_vals.head(col_nnz);
|
||||
Ref<VectorIx> cirow = col_irow.head(col_nnz);
|
||||
internal::QuickSplit(cvals,cirow, p);
|
||||
// Insert the largest p elements in the matrix
|
||||
Index cpt = 0;
|
||||
for (Index i = colPtr[j]+1; i < colPtr[j+1]; i++)
|
||||
{
|
||||
vals[i] = col_vals(cpt);
|
||||
rowIdx[i] = col_irow(cpt);
|
||||
// restore col_pattern:
|
||||
col_pattern(col_irow(cpt)) = -1;
|
||||
cpt++;
|
||||
}
|
||||
// Get the first smallest row index and put it after the diagonal element
|
||||
Index jk = colPtr(j)+1;
|
||||
updateList(colPtr,rowIdx,vals,j,jk,firstElt,listCol);
|
||||
}
|
||||
|
||||
if(j==n)
|
||||
{
|
||||
m_factorizationIsOk = true;
|
||||
m_info = Success;
|
||||
}
|
||||
} while(m_info!=Success);
|
||||
}
|
||||
|
||||
template<typename Scalar, int _UpLo, typename OrderingType>
|
||||
inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol)
|
||||
{
|
||||
if (jk < colPtr(col+1) )
|
||||
{
|
||||
Index p = colPtr(col+1) - jk;
|
||||
Index minpos;
|
||||
rowIdx.segment(jk,p).minCoeff(&minpos);
|
||||
minpos += jk;
|
||||
if (rowIdx(minpos) != rowIdx(jk))
|
||||
{
|
||||
//Swap
|
||||
std::swap(rowIdx(jk),rowIdx(minpos));
|
||||
std::swap(vals(jk),vals(minpos));
|
||||
}
|
||||
firstElt(col) = internal::convert_index<StorageIndex,Index>(jk);
|
||||
listCol[rowIdx(jk)].push_back(internal::convert_index<StorageIndex,Index>(col));
|
||||
}
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif
|
||||
462
external/include/eigen3/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h
vendored
Normal file
462
external/include/eigen3/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h
vendored
Normal file
@@ -0,0 +1,462 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
|
||||
// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_INCOMPLETE_LUT_H
|
||||
#define EIGEN_INCOMPLETE_LUT_H
|
||||
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
/** \internal
|
||||
* Compute a quick-sort split of a vector
|
||||
* On output, the vector row is permuted such that its elements satisfy
|
||||
* abs(row(i)) >= abs(row(ncut)) if i<ncut
|
||||
* abs(row(i)) <= abs(row(ncut)) if i>ncut
|
||||
* \param row The vector of values
|
||||
* \param ind The array of index for the elements in @p row
|
||||
* \param ncut The number of largest elements to keep
|
||||
**/
|
||||
template <typename VectorV, typename VectorI>
|
||||
Index QuickSplit(VectorV &row, VectorI &ind, Index ncut)
|
||||
{
|
||||
typedef typename VectorV::RealScalar RealScalar;
|
||||
using std::swap;
|
||||
using std::abs;
|
||||
Index mid;
|
||||
Index n = row.size(); /* length of the vector */
|
||||
Index first, last ;
|
||||
|
||||
ncut--; /* to fit the zero-based indices */
|
||||
first = 0;
|
||||
last = n-1;
|
||||
if (ncut < first || ncut > last ) return 0;
|
||||
|
||||
do {
|
||||
mid = first;
|
||||
RealScalar abskey = abs(row(mid));
|
||||
for (Index j = first + 1; j <= last; j++) {
|
||||
if ( abs(row(j)) > abskey) {
|
||||
++mid;
|
||||
swap(row(mid), row(j));
|
||||
swap(ind(mid), ind(j));
|
||||
}
|
||||
}
|
||||
/* Interchange for the pivot element */
|
||||
swap(row(mid), row(first));
|
||||
swap(ind(mid), ind(first));
|
||||
|
||||
if (mid > ncut) last = mid - 1;
|
||||
else if (mid < ncut ) first = mid + 1;
|
||||
} while (mid != ncut );
|
||||
|
||||
return 0; /* mid is equal to ncut */
|
||||
}
|
||||
|
||||
}// end namespace internal
|
||||
|
||||
/** \ingroup IterativeLinearSolvers_Module
|
||||
* \class IncompleteLUT
|
||||
* \brief Incomplete LU factorization with dual-threshold strategy
|
||||
*
|
||||
* \implsparsesolverconcept
|
||||
*
|
||||
* During the numerical factorization, two dropping rules are used :
|
||||
* 1) any element whose magnitude is less than some tolerance is dropped.
|
||||
* This tolerance is obtained by multiplying the input tolerance @p droptol
|
||||
* by the average magnitude of all the original elements in the current row.
|
||||
* 2) After the elimination of the row, only the @p fill largest elements in
|
||||
* the L part and the @p fill largest elements in the U part are kept
|
||||
* (in addition to the diagonal element ). Note that @p fill is computed from
|
||||
* the input parameter @p fillfactor which is used the ratio to control the fill_in
|
||||
* relatively to the initial number of nonzero elements.
|
||||
*
|
||||
* The two extreme cases are when @p droptol=0 (to keep all the @p fill*2 largest elements)
|
||||
* and when @p fill=n/2 with @p droptol being different to zero.
|
||||
*
|
||||
* References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization,
|
||||
* Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994.
|
||||
*
|
||||
* NOTE : The following implementation is derived from the ILUT implementation
|
||||
* in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota
|
||||
* released under the terms of the GNU LGPL:
|
||||
* http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README
|
||||
* However, Yousef Saad gave us permission to relicense his ILUT code to MPL2.
|
||||
* See the Eigen mailing list archive, thread: ILUT, date: July 8, 2012:
|
||||
* http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2012/07/msg00064.html
|
||||
* alternatively, on GMANE:
|
||||
* http://comments.gmane.org/gmane.comp.lib.eigen/3302
|
||||
*/
|
||||
template <typename _Scalar, typename _StorageIndex = int>
|
||||
class IncompleteLUT : public SparseSolverBase<IncompleteLUT<_Scalar, _StorageIndex> >
|
||||
{
|
||||
protected:
|
||||
typedef SparseSolverBase<IncompleteLUT> Base;
|
||||
using Base::m_isInitialized;
|
||||
public:
|
||||
typedef _Scalar Scalar;
|
||||
typedef _StorageIndex StorageIndex;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar,Dynamic,1> Vector;
|
||||
typedef Matrix<StorageIndex,Dynamic,1> VectorI;
|
||||
typedef SparseMatrix<Scalar,RowMajor,StorageIndex> FactorType;
|
||||
|
||||
enum {
|
||||
ColsAtCompileTime = Dynamic,
|
||||
MaxColsAtCompileTime = Dynamic
|
||||
};
|
||||
|
||||
public:
|
||||
|
||||
IncompleteLUT()
|
||||
: m_droptol(NumTraits<Scalar>::dummy_precision()), m_fillfactor(10),
|
||||
m_analysisIsOk(false), m_factorizationIsOk(false)
|
||||
{}
|
||||
|
||||
template<typename MatrixType>
|
||||
explicit IncompleteLUT(const MatrixType& mat, const RealScalar& droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10)
|
||||
: m_droptol(droptol),m_fillfactor(fillfactor),
|
||||
m_analysisIsOk(false),m_factorizationIsOk(false)
|
||||
{
|
||||
eigen_assert(fillfactor != 0);
|
||||
compute(mat);
|
||||
}
|
||||
|
||||
Index rows() const { return m_lu.rows(); }
|
||||
|
||||
Index cols() const { return m_lu.cols(); }
|
||||
|
||||
/** \brief Reports whether previous computation was successful.
|
||||
*
|
||||
* \returns \c Success if computation was succesful,
|
||||
* \c NumericalIssue if the matrix.appears to be negative.
|
||||
*/
|
||||
ComputationInfo info() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
|
||||
return m_info;
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
void analyzePattern(const MatrixType& amat);
|
||||
|
||||
template<typename MatrixType>
|
||||
void factorize(const MatrixType& amat);
|
||||
|
||||
/**
|
||||
* Compute an incomplete LU factorization with dual threshold on the matrix mat
|
||||
* No pivoting is done in this version
|
||||
*
|
||||
**/
|
||||
template<typename MatrixType>
|
||||
IncompleteLUT& compute(const MatrixType& amat)
|
||||
{
|
||||
analyzePattern(amat);
|
||||
factorize(amat);
|
||||
return *this;
|
||||
}
|
||||
|
||||
void setDroptol(const RealScalar& droptol);
|
||||
void setFillfactor(int fillfactor);
|
||||
|
||||
template<typename Rhs, typename Dest>
|
||||
void _solve_impl(const Rhs& b, Dest& x) const
|
||||
{
|
||||
x = m_Pinv * b;
|
||||
x = m_lu.template triangularView<UnitLower>().solve(x);
|
||||
x = m_lu.template triangularView<Upper>().solve(x);
|
||||
x = m_P * x;
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
/** keeps off-diagonal entries; drops diagonal entries */
|
||||
struct keep_diag {
|
||||
inline bool operator() (const Index& row, const Index& col, const Scalar&) const
|
||||
{
|
||||
return row!=col;
|
||||
}
|
||||
};
|
||||
|
||||
protected:
|
||||
|
||||
FactorType m_lu;
|
||||
RealScalar m_droptol;
|
||||
int m_fillfactor;
|
||||
bool m_analysisIsOk;
|
||||
bool m_factorizationIsOk;
|
||||
ComputationInfo m_info;
|
||||
PermutationMatrix<Dynamic,Dynamic,StorageIndex> m_P; // Fill-reducing permutation
|
||||
PermutationMatrix<Dynamic,Dynamic,StorageIndex> m_Pinv; // Inverse permutation
|
||||
};
|
||||
|
||||
/**
|
||||
* Set control parameter droptol
|
||||
* \param droptol Drop any element whose magnitude is less than this tolerance
|
||||
**/
|
||||
template<typename Scalar, typename StorageIndex>
|
||||
void IncompleteLUT<Scalar,StorageIndex>::setDroptol(const RealScalar& droptol)
|
||||
{
|
||||
this->m_droptol = droptol;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set control parameter fillfactor
|
||||
* \param fillfactor This is used to compute the number @p fill_in of largest elements to keep on each row.
|
||||
**/
|
||||
template<typename Scalar, typename StorageIndex>
|
||||
void IncompleteLUT<Scalar,StorageIndex>::setFillfactor(int fillfactor)
|
||||
{
|
||||
this->m_fillfactor = fillfactor;
|
||||
}
|
||||
|
||||
template <typename Scalar, typename StorageIndex>
|
||||
template<typename _MatrixType>
|
||||
void IncompleteLUT<Scalar,StorageIndex>::analyzePattern(const _MatrixType& amat)
|
||||
{
|
||||
// Compute the Fill-reducing permutation
|
||||
// Since ILUT does not perform any numerical pivoting,
|
||||
// it is highly preferable to keep the diagonal through symmetric permutations.
|
||||
#ifndef EIGEN_MPL2_ONLY
|
||||
// To this end, let's symmetrize the pattern and perform AMD on it.
|
||||
SparseMatrix<Scalar,ColMajor, StorageIndex> mat1 = amat;
|
||||
SparseMatrix<Scalar,ColMajor, StorageIndex> mat2 = amat.transpose();
|
||||
// FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice.
|
||||
// on the other hand for a really non-symmetric pattern, mat2*mat1 should be prefered...
|
||||
SparseMatrix<Scalar,ColMajor, StorageIndex> AtA = mat2 + mat1;
|
||||
AMDOrdering<StorageIndex> ordering;
|
||||
ordering(AtA,m_P);
|
||||
m_Pinv = m_P.inverse(); // cache the inverse permutation
|
||||
#else
|
||||
// If AMD is not available, (MPL2-only), then let's use the slower COLAMD routine.
|
||||
SparseMatrix<Scalar,ColMajor, StorageIndex> mat1 = amat;
|
||||
COLAMDOrdering<StorageIndex> ordering;
|
||||
ordering(mat1,m_Pinv);
|
||||
m_P = m_Pinv.inverse();
|
||||
#endif
|
||||
|
||||
m_analysisIsOk = true;
|
||||
m_factorizationIsOk = false;
|
||||
m_isInitialized = true;
|
||||
}
|
||||
|
||||
template <typename Scalar, typename StorageIndex>
|
||||
template<typename _MatrixType>
|
||||
void IncompleteLUT<Scalar,StorageIndex>::factorize(const _MatrixType& amat)
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::swap;
|
||||
using std::abs;
|
||||
using internal::convert_index;
|
||||
|
||||
eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix");
|
||||
Index n = amat.cols(); // Size of the matrix
|
||||
m_lu.resize(n,n);
|
||||
// Declare Working vectors and variables
|
||||
Vector u(n) ; // real values of the row -- maximum size is n --
|
||||
VectorI ju(n); // column position of the values in u -- maximum size is n
|
||||
VectorI jr(n); // Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1
|
||||
|
||||
// Apply the fill-reducing permutation
|
||||
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
|
||||
SparseMatrix<Scalar,RowMajor, StorageIndex> mat;
|
||||
mat = amat.twistedBy(m_Pinv);
|
||||
|
||||
// Initialization
|
||||
jr.fill(-1);
|
||||
ju.fill(0);
|
||||
u.fill(0);
|
||||
|
||||
// number of largest elements to keep in each row:
|
||||
Index fill_in = (amat.nonZeros()*m_fillfactor)/n + 1;
|
||||
if (fill_in > n) fill_in = n;
|
||||
|
||||
// number of largest nonzero elements to keep in the L and the U part of the current row:
|
||||
Index nnzL = fill_in/2;
|
||||
Index nnzU = nnzL;
|
||||
m_lu.reserve(n * (nnzL + nnzU + 1));
|
||||
|
||||
// global loop over the rows of the sparse matrix
|
||||
for (Index ii = 0; ii < n; ii++)
|
||||
{
|
||||
// 1 - copy the lower and the upper part of the row i of mat in the working vector u
|
||||
|
||||
Index sizeu = 1; // number of nonzero elements in the upper part of the current row
|
||||
Index sizel = 0; // number of nonzero elements in the lower part of the current row
|
||||
ju(ii) = convert_index<StorageIndex>(ii);
|
||||
u(ii) = 0;
|
||||
jr(ii) = convert_index<StorageIndex>(ii);
|
||||
RealScalar rownorm = 0;
|
||||
|
||||
typename FactorType::InnerIterator j_it(mat, ii); // Iterate through the current row ii
|
||||
for (; j_it; ++j_it)
|
||||
{
|
||||
Index k = j_it.index();
|
||||
if (k < ii)
|
||||
{
|
||||
// copy the lower part
|
||||
ju(sizel) = convert_index<StorageIndex>(k);
|
||||
u(sizel) = j_it.value();
|
||||
jr(k) = convert_index<StorageIndex>(sizel);
|
||||
++sizel;
|
||||
}
|
||||
else if (k == ii)
|
||||
{
|
||||
u(ii) = j_it.value();
|
||||
}
|
||||
else
|
||||
{
|
||||
// copy the upper part
|
||||
Index jpos = ii + sizeu;
|
||||
ju(jpos) = convert_index<StorageIndex>(k);
|
||||
u(jpos) = j_it.value();
|
||||
jr(k) = convert_index<StorageIndex>(jpos);
|
||||
++sizeu;
|
||||
}
|
||||
rownorm += numext::abs2(j_it.value());
|
||||
}
|
||||
|
||||
// 2 - detect possible zero row
|
||||
if(rownorm==0)
|
||||
{
|
||||
m_info = NumericalIssue;
|
||||
return;
|
||||
}
|
||||
// Take the 2-norm of the current row as a relative tolerance
|
||||
rownorm = sqrt(rownorm);
|
||||
|
||||
// 3 - eliminate the previous nonzero rows
|
||||
Index jj = 0;
|
||||
Index len = 0;
|
||||
while (jj < sizel)
|
||||
{
|
||||
// In order to eliminate in the correct order,
|
||||
// we must select first the smallest column index among ju(jj:sizel)
|
||||
Index k;
|
||||
Index minrow = ju.segment(jj,sizel-jj).minCoeff(&k); // k is relative to the segment
|
||||
k += jj;
|
||||
if (minrow != ju(jj))
|
||||
{
|
||||
// swap the two locations
|
||||
Index j = ju(jj);
|
||||
swap(ju(jj), ju(k));
|
||||
jr(minrow) = convert_index<StorageIndex>(jj);
|
||||
jr(j) = convert_index<StorageIndex>(k);
|
||||
swap(u(jj), u(k));
|
||||
}
|
||||
// Reset this location
|
||||
jr(minrow) = -1;
|
||||
|
||||
// Start elimination
|
||||
typename FactorType::InnerIterator ki_it(m_lu, minrow);
|
||||
while (ki_it && ki_it.index() < minrow) ++ki_it;
|
||||
eigen_internal_assert(ki_it && ki_it.col()==minrow);
|
||||
Scalar fact = u(jj) / ki_it.value();
|
||||
|
||||
// drop too small elements
|
||||
if(abs(fact) <= m_droptol)
|
||||
{
|
||||
jj++;
|
||||
continue;
|
||||
}
|
||||
|
||||
// linear combination of the current row ii and the row minrow
|
||||
++ki_it;
|
||||
for (; ki_it; ++ki_it)
|
||||
{
|
||||
Scalar prod = fact * ki_it.value();
|
||||
Index j = ki_it.index();
|
||||
Index jpos = jr(j);
|
||||
if (jpos == -1) // fill-in element
|
||||
{
|
||||
Index newpos;
|
||||
if (j >= ii) // dealing with the upper part
|
||||
{
|
||||
newpos = ii + sizeu;
|
||||
sizeu++;
|
||||
eigen_internal_assert(sizeu<=n);
|
||||
}
|
||||
else // dealing with the lower part
|
||||
{
|
||||
newpos = sizel;
|
||||
sizel++;
|
||||
eigen_internal_assert(sizel<=ii);
|
||||
}
|
||||
ju(newpos) = convert_index<StorageIndex>(j);
|
||||
u(newpos) = -prod;
|
||||
jr(j) = convert_index<StorageIndex>(newpos);
|
||||
}
|
||||
else
|
||||
u(jpos) -= prod;
|
||||
}
|
||||
// store the pivot element
|
||||
u(len) = fact;
|
||||
ju(len) = convert_index<StorageIndex>(minrow);
|
||||
++len;
|
||||
|
||||
jj++;
|
||||
} // end of the elimination on the row ii
|
||||
|
||||
// reset the upper part of the pointer jr to zero
|
||||
for(Index k = 0; k <sizeu; k++) jr(ju(ii+k)) = -1;
|
||||
|
||||
// 4 - partially sort and insert the elements in the m_lu matrix
|
||||
|
||||
// sort the L-part of the row
|
||||
sizel = len;
|
||||
len = (std::min)(sizel, nnzL);
|
||||
typename Vector::SegmentReturnType ul(u.segment(0, sizel));
|
||||
typename VectorI::SegmentReturnType jul(ju.segment(0, sizel));
|
||||
internal::QuickSplit(ul, jul, len);
|
||||
|
||||
// store the largest m_fill elements of the L part
|
||||
m_lu.startVec(ii);
|
||||
for(Index k = 0; k < len; k++)
|
||||
m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
|
||||
|
||||
// store the diagonal element
|
||||
// apply a shifting rule to avoid zero pivots (we are doing an incomplete factorization)
|
||||
if (u(ii) == Scalar(0))
|
||||
u(ii) = sqrt(m_droptol) * rownorm;
|
||||
m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii);
|
||||
|
||||
// sort the U-part of the row
|
||||
// apply the dropping rule first
|
||||
len = 0;
|
||||
for(Index k = 1; k < sizeu; k++)
|
||||
{
|
||||
if(abs(u(ii+k)) > m_droptol * rownorm )
|
||||
{
|
||||
++len;
|
||||
u(ii + len) = u(ii + k);
|
||||
ju(ii + len) = ju(ii + k);
|
||||
}
|
||||
}
|
||||
sizeu = len + 1; // +1 to take into account the diagonal element
|
||||
len = (std::min)(sizeu, nnzU);
|
||||
typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
|
||||
typename VectorI::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
|
||||
internal::QuickSplit(uu, juu, len);
|
||||
|
||||
// store the largest elements of the U part
|
||||
for(Index k = ii + 1; k < ii + len; k++)
|
||||
m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
|
||||
}
|
||||
m_lu.finalize();
|
||||
m_lu.makeCompressed();
|
||||
|
||||
m_factorizationIsOk = true;
|
||||
m_info = Success;
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_INCOMPLETE_LUT_H
|
||||
394
external/include/eigen3/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h
vendored
Normal file
394
external/include/eigen3/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h
vendored
Normal file
@@ -0,0 +1,394 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_ITERATIVE_SOLVER_BASE_H
|
||||
#define EIGEN_ITERATIVE_SOLVER_BASE_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename MatrixType>
|
||||
struct is_ref_compatible_impl
|
||||
{
|
||||
private:
|
||||
template <typename T0>
|
||||
struct any_conversion
|
||||
{
|
||||
template <typename T> any_conversion(const volatile T&);
|
||||
template <typename T> any_conversion(T&);
|
||||
};
|
||||
struct yes {int a[1];};
|
||||
struct no {int a[2];};
|
||||
|
||||
template<typename T>
|
||||
static yes test(const Ref<const T>&, int);
|
||||
template<typename T>
|
||||
static no test(any_conversion<T>, ...);
|
||||
|
||||
public:
|
||||
static MatrixType ms_from;
|
||||
enum { value = sizeof(test<MatrixType>(ms_from, 0))==sizeof(yes) };
|
||||
};
|
||||
|
||||
template<typename MatrixType>
|
||||
struct is_ref_compatible
|
||||
{
|
||||
enum { value = is_ref_compatible_impl<typename remove_all<MatrixType>::type>::value };
|
||||
};
|
||||
|
||||
template<typename MatrixType, bool MatrixFree = !internal::is_ref_compatible<MatrixType>::value>
|
||||
class generic_matrix_wrapper;
|
||||
|
||||
// We have an explicit matrix at hand, compatible with Ref<>
|
||||
template<typename MatrixType>
|
||||
class generic_matrix_wrapper<MatrixType,false>
|
||||
{
|
||||
public:
|
||||
typedef Ref<const MatrixType> ActualMatrixType;
|
||||
template<int UpLo> struct ConstSelfAdjointViewReturnType {
|
||||
typedef typename ActualMatrixType::template ConstSelfAdjointViewReturnType<UpLo>::Type Type;
|
||||
};
|
||||
|
||||
enum {
|
||||
MatrixFree = false
|
||||
};
|
||||
|
||||
generic_matrix_wrapper()
|
||||
: m_dummy(0,0), m_matrix(m_dummy)
|
||||
{}
|
||||
|
||||
template<typename InputType>
|
||||
generic_matrix_wrapper(const InputType &mat)
|
||||
: m_matrix(mat)
|
||||
{}
|
||||
|
||||
const ActualMatrixType& matrix() const
|
||||
{
|
||||
return m_matrix;
|
||||
}
|
||||
|
||||
template<typename MatrixDerived>
|
||||
void grab(const EigenBase<MatrixDerived> &mat)
|
||||
{
|
||||
m_matrix.~Ref<const MatrixType>();
|
||||
::new (&m_matrix) Ref<const MatrixType>(mat.derived());
|
||||
}
|
||||
|
||||
void grab(const Ref<const MatrixType> &mat)
|
||||
{
|
||||
if(&(mat.derived()) != &m_matrix)
|
||||
{
|
||||
m_matrix.~Ref<const MatrixType>();
|
||||
::new (&m_matrix) Ref<const MatrixType>(mat);
|
||||
}
|
||||
}
|
||||
|
||||
protected:
|
||||
MatrixType m_dummy; // used to default initialize the Ref<> object
|
||||
ActualMatrixType m_matrix;
|
||||
};
|
||||
|
||||
// MatrixType is not compatible with Ref<> -> matrix-free wrapper
|
||||
template<typename MatrixType>
|
||||
class generic_matrix_wrapper<MatrixType,true>
|
||||
{
|
||||
public:
|
||||
typedef MatrixType ActualMatrixType;
|
||||
template<int UpLo> struct ConstSelfAdjointViewReturnType
|
||||
{
|
||||
typedef ActualMatrixType Type;
|
||||
};
|
||||
|
||||
enum {
|
||||
MatrixFree = true
|
||||
};
|
||||
|
||||
generic_matrix_wrapper()
|
||||
: mp_matrix(0)
|
||||
{}
|
||||
|
||||
generic_matrix_wrapper(const MatrixType &mat)
|
||||
: mp_matrix(&mat)
|
||||
{}
|
||||
|
||||
const ActualMatrixType& matrix() const
|
||||
{
|
||||
return *mp_matrix;
|
||||
}
|
||||
|
||||
void grab(const MatrixType &mat)
|
||||
{
|
||||
mp_matrix = &mat;
|
||||
}
|
||||
|
||||
protected:
|
||||
const ActualMatrixType *mp_matrix;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
/** \ingroup IterativeLinearSolvers_Module
|
||||
* \brief Base class for linear iterative solvers
|
||||
*
|
||||
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
|
||||
*/
|
||||
template< typename Derived>
|
||||
class IterativeSolverBase : public SparseSolverBase<Derived>
|
||||
{
|
||||
protected:
|
||||
typedef SparseSolverBase<Derived> Base;
|
||||
using Base::m_isInitialized;
|
||||
|
||||
public:
|
||||
typedef typename internal::traits<Derived>::MatrixType MatrixType;
|
||||
typedef typename internal::traits<Derived>::Preconditioner Preconditioner;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::StorageIndex StorageIndex;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
|
||||
enum {
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
||||
};
|
||||
|
||||
public:
|
||||
|
||||
using Base::derived;
|
||||
|
||||
/** Default constructor. */
|
||||
IterativeSolverBase()
|
||||
{
|
||||
init();
|
||||
}
|
||||
|
||||
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
|
||||
*
|
||||
* This constructor is a shortcut for the default constructor followed
|
||||
* by a call to compute().
|
||||
*
|
||||
* \warning this class stores a reference to the matrix A as well as some
|
||||
* precomputed values that depend on it. Therefore, if \a A is changed
|
||||
* this class becomes invalid. Call compute() to update it with the new
|
||||
* matrix A, or modify a copy of A.
|
||||
*/
|
||||
template<typename MatrixDerived>
|
||||
explicit IterativeSolverBase(const EigenBase<MatrixDerived>& A)
|
||||
: m_matrixWrapper(A.derived())
|
||||
{
|
||||
init();
|
||||
compute(matrix());
|
||||
}
|
||||
|
||||
~IterativeSolverBase() {}
|
||||
|
||||
/** Initializes the iterative solver for the sparsity pattern of the matrix \a A for further solving \c Ax=b problems.
|
||||
*
|
||||
* Currently, this function mostly calls analyzePattern on the preconditioner. In the future
|
||||
* we might, for instance, implement column reordering for faster matrix vector products.
|
||||
*/
|
||||
template<typename MatrixDerived>
|
||||
Derived& analyzePattern(const EigenBase<MatrixDerived>& A)
|
||||
{
|
||||
grab(A.derived());
|
||||
m_preconditioner.analyzePattern(matrix());
|
||||
m_isInitialized = true;
|
||||
m_analysisIsOk = true;
|
||||
m_info = m_preconditioner.info();
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** Initializes the iterative solver with the numerical values of the matrix \a A for further solving \c Ax=b problems.
|
||||
*
|
||||
* Currently, this function mostly calls factorize on the preconditioner.
|
||||
*
|
||||
* \warning this class stores a reference to the matrix A as well as some
|
||||
* precomputed values that depend on it. Therefore, if \a A is changed
|
||||
* this class becomes invalid. Call compute() to update it with the new
|
||||
* matrix A, or modify a copy of A.
|
||||
*/
|
||||
template<typename MatrixDerived>
|
||||
Derived& factorize(const EigenBase<MatrixDerived>& A)
|
||||
{
|
||||
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
|
||||
grab(A.derived());
|
||||
m_preconditioner.factorize(matrix());
|
||||
m_factorizationIsOk = true;
|
||||
m_info = m_preconditioner.info();
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** Initializes the iterative solver with the matrix \a A for further solving \c Ax=b problems.
|
||||
*
|
||||
* Currently, this function mostly initializes/computes the preconditioner. In the future
|
||||
* we might, for instance, implement column reordering for faster matrix vector products.
|
||||
*
|
||||
* \warning this class stores a reference to the matrix A as well as some
|
||||
* precomputed values that depend on it. Therefore, if \a A is changed
|
||||
* this class becomes invalid. Call compute() to update it with the new
|
||||
* matrix A, or modify a copy of A.
|
||||
*/
|
||||
template<typename MatrixDerived>
|
||||
Derived& compute(const EigenBase<MatrixDerived>& A)
|
||||
{
|
||||
grab(A.derived());
|
||||
m_preconditioner.compute(matrix());
|
||||
m_isInitialized = true;
|
||||
m_analysisIsOk = true;
|
||||
m_factorizationIsOk = true;
|
||||
m_info = m_preconditioner.info();
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
Index rows() const { return matrix().rows(); }
|
||||
|
||||
/** \internal */
|
||||
Index cols() const { return matrix().cols(); }
|
||||
|
||||
/** \returns the tolerance threshold used by the stopping criteria.
|
||||
* \sa setTolerance()
|
||||
*/
|
||||
RealScalar tolerance() const { return m_tolerance; }
|
||||
|
||||
/** Sets the tolerance threshold used by the stopping criteria.
|
||||
*
|
||||
* This value is used as an upper bound to the relative residual error: |Ax-b|/|b|.
|
||||
* The default value is the machine precision given by NumTraits<Scalar>::epsilon()
|
||||
*/
|
||||
Derived& setTolerance(const RealScalar& tolerance)
|
||||
{
|
||||
m_tolerance = tolerance;
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** \returns a read-write reference to the preconditioner for custom configuration. */
|
||||
Preconditioner& preconditioner() { return m_preconditioner; }
|
||||
|
||||
/** \returns a read-only reference to the preconditioner. */
|
||||
const Preconditioner& preconditioner() const { return m_preconditioner; }
|
||||
|
||||
/** \returns the max number of iterations.
|
||||
* It is either the value setted by setMaxIterations or, by default,
|
||||
* twice the number of columns of the matrix.
|
||||
*/
|
||||
Index maxIterations() const
|
||||
{
|
||||
return (m_maxIterations<0) ? 2*matrix().cols() : m_maxIterations;
|
||||
}
|
||||
|
||||
/** Sets the max number of iterations.
|
||||
* Default is twice the number of columns of the matrix.
|
||||
*/
|
||||
Derived& setMaxIterations(Index maxIters)
|
||||
{
|
||||
m_maxIterations = maxIters;
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** \returns the number of iterations performed during the last solve */
|
||||
Index iterations() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
|
||||
return m_iterations;
|
||||
}
|
||||
|
||||
/** \returns the tolerance error reached during the last solve.
|
||||
* It is a close approximation of the true relative residual error |Ax-b|/|b|.
|
||||
*/
|
||||
RealScalar error() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
|
||||
return m_error;
|
||||
}
|
||||
|
||||
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
|
||||
* and \a x0 as an initial solution.
|
||||
*
|
||||
* \sa solve(), compute()
|
||||
*/
|
||||
template<typename Rhs,typename Guess>
|
||||
inline const SolveWithGuess<Derived, Rhs, Guess>
|
||||
solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "Solver is not initialized.");
|
||||
eigen_assert(derived().rows()==b.rows() && "solve(): invalid number of rows of the right hand side matrix b");
|
||||
return SolveWithGuess<Derived, Rhs, Guess>(derived(), b.derived(), x0);
|
||||
}
|
||||
|
||||
/** \returns Success if the iterations converged, and NoConvergence otherwise. */
|
||||
ComputationInfo info() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized.");
|
||||
return m_info;
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
template<typename Rhs, typename DestDerived>
|
||||
void _solve_impl(const Rhs& b, SparseMatrixBase<DestDerived> &aDest) const
|
||||
{
|
||||
eigen_assert(rows()==b.rows());
|
||||
|
||||
Index rhsCols = b.cols();
|
||||
Index size = b.rows();
|
||||
DestDerived& dest(aDest.derived());
|
||||
typedef typename DestDerived::Scalar DestScalar;
|
||||
Eigen::Matrix<DestScalar,Dynamic,1> tb(size);
|
||||
Eigen::Matrix<DestScalar,Dynamic,1> tx(cols());
|
||||
// We do not directly fill dest because sparse expressions have to be free of aliasing issue.
|
||||
// For non square least-square problems, b and dest might not have the same size whereas they might alias each-other.
|
||||
typename DestDerived::PlainObject tmp(cols(),rhsCols);
|
||||
for(Index k=0; k<rhsCols; ++k)
|
||||
{
|
||||
tb = b.col(k);
|
||||
tx = derived().solve(tb);
|
||||
tmp.col(k) = tx.sparseView(0);
|
||||
}
|
||||
dest.swap(tmp);
|
||||
}
|
||||
|
||||
protected:
|
||||
void init()
|
||||
{
|
||||
m_isInitialized = false;
|
||||
m_analysisIsOk = false;
|
||||
m_factorizationIsOk = false;
|
||||
m_maxIterations = -1;
|
||||
m_tolerance = NumTraits<Scalar>::epsilon();
|
||||
}
|
||||
|
||||
typedef internal::generic_matrix_wrapper<MatrixType> MatrixWrapper;
|
||||
typedef typename MatrixWrapper::ActualMatrixType ActualMatrixType;
|
||||
|
||||
const ActualMatrixType& matrix() const
|
||||
{
|
||||
return m_matrixWrapper.matrix();
|
||||
}
|
||||
|
||||
template<typename InputType>
|
||||
void grab(const InputType &A)
|
||||
{
|
||||
m_matrixWrapper.grab(A);
|
||||
}
|
||||
|
||||
MatrixWrapper m_matrixWrapper;
|
||||
Preconditioner m_preconditioner;
|
||||
|
||||
Index m_maxIterations;
|
||||
RealScalar m_tolerance;
|
||||
|
||||
mutable RealScalar m_error;
|
||||
mutable Index m_iterations;
|
||||
mutable ComputationInfo m_info;
|
||||
mutable bool m_analysisIsOk, m_factorizationIsOk;
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_ITERATIVE_SOLVER_BASE_H
|
||||
216
external/include/eigen3/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h
vendored
Normal file
216
external/include/eigen3/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h
vendored
Normal file
@@ -0,0 +1,216 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H
|
||||
#define EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
/** \internal Low-level conjugate gradient algorithm for least-square problems
|
||||
* \param mat The matrix A
|
||||
* \param rhs The right hand side vector b
|
||||
* \param x On input and initial solution, on output the computed solution.
|
||||
* \param precond A preconditioner being able to efficiently solve for an
|
||||
* approximation of A'Ax=b (regardless of b)
|
||||
* \param iters On input the max number of iteration, on output the number of performed iterations.
|
||||
* \param tol_error On input the tolerance error, on output an estimation of the relative error.
|
||||
*/
|
||||
template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
|
||||
EIGEN_DONT_INLINE
|
||||
void least_square_conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
|
||||
const Preconditioner& precond, Index& iters,
|
||||
typename Dest::RealScalar& tol_error)
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::abs;
|
||||
typedef typename Dest::RealScalar RealScalar;
|
||||
typedef typename Dest::Scalar Scalar;
|
||||
typedef Matrix<Scalar,Dynamic,1> VectorType;
|
||||
|
||||
RealScalar tol = tol_error;
|
||||
Index maxIters = iters;
|
||||
|
||||
Index m = mat.rows(), n = mat.cols();
|
||||
|
||||
VectorType residual = rhs - mat * x;
|
||||
VectorType normal_residual = mat.adjoint() * residual;
|
||||
|
||||
RealScalar rhsNorm2 = (mat.adjoint()*rhs).squaredNorm();
|
||||
if(rhsNorm2 == 0)
|
||||
{
|
||||
x.setZero();
|
||||
iters = 0;
|
||||
tol_error = 0;
|
||||
return;
|
||||
}
|
||||
RealScalar threshold = tol*tol*rhsNorm2;
|
||||
RealScalar residualNorm2 = normal_residual.squaredNorm();
|
||||
if (residualNorm2 < threshold)
|
||||
{
|
||||
iters = 0;
|
||||
tol_error = sqrt(residualNorm2 / rhsNorm2);
|
||||
return;
|
||||
}
|
||||
|
||||
VectorType p(n);
|
||||
p = precond.solve(normal_residual); // initial search direction
|
||||
|
||||
VectorType z(n), tmp(m);
|
||||
RealScalar absNew = numext::real(normal_residual.dot(p)); // the square of the absolute value of r scaled by invM
|
||||
Index i = 0;
|
||||
while(i < maxIters)
|
||||
{
|
||||
tmp.noalias() = mat * p;
|
||||
|
||||
Scalar alpha = absNew / tmp.squaredNorm(); // the amount we travel on dir
|
||||
x += alpha * p; // update solution
|
||||
residual -= alpha * tmp; // update residual
|
||||
normal_residual = mat.adjoint() * residual; // update residual of the normal equation
|
||||
|
||||
residualNorm2 = normal_residual.squaredNorm();
|
||||
if(residualNorm2 < threshold)
|
||||
break;
|
||||
|
||||
z = precond.solve(normal_residual); // approximately solve for "A'A z = normal_residual"
|
||||
|
||||
RealScalar absOld = absNew;
|
||||
absNew = numext::real(normal_residual.dot(z)); // update the absolute value of r
|
||||
RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction
|
||||
p = z + beta * p; // update search direction
|
||||
i++;
|
||||
}
|
||||
tol_error = sqrt(residualNorm2 / rhsNorm2);
|
||||
iters = i;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template< typename _MatrixType,
|
||||
typename _Preconditioner = LeastSquareDiagonalPreconditioner<typename _MatrixType::Scalar> >
|
||||
class LeastSquaresConjugateGradient;
|
||||
|
||||
namespace internal {
|
||||
|
||||
template< typename _MatrixType, typename _Preconditioner>
|
||||
struct traits<LeastSquaresConjugateGradient<_MatrixType,_Preconditioner> >
|
||||
{
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef _Preconditioner Preconditioner;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
/** \ingroup IterativeLinearSolvers_Module
|
||||
* \brief A conjugate gradient solver for sparse (or dense) least-square problems
|
||||
*
|
||||
* This class allows to solve for A x = b linear problems using an iterative conjugate gradient algorithm.
|
||||
* The matrix A can be non symmetric and rectangular, but the matrix A' A should be positive-definite to guaranty stability.
|
||||
* Otherwise, the SparseLU or SparseQR classes might be preferable.
|
||||
* The matrix A and the vectors x and b can be either dense or sparse.
|
||||
*
|
||||
* \tparam _MatrixType the type of the matrix A, can be a dense or a sparse matrix.
|
||||
* \tparam _Preconditioner the type of the preconditioner. Default is LeastSquareDiagonalPreconditioner
|
||||
*
|
||||
* \implsparsesolverconcept
|
||||
*
|
||||
* The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
|
||||
* and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
|
||||
* and NumTraits<Scalar>::epsilon() for the tolerance.
|
||||
*
|
||||
* This class can be used as the direct solver classes. Here is a typical usage example:
|
||||
\code
|
||||
int m=1000000, n = 10000;
|
||||
VectorXd x(n), b(m);
|
||||
SparseMatrix<double> A(m,n);
|
||||
// fill A and b
|
||||
LeastSquaresConjugateGradient<SparseMatrix<double> > lscg;
|
||||
lscg.compute(A);
|
||||
x = lscg.solve(b);
|
||||
std::cout << "#iterations: " << lscg.iterations() << std::endl;
|
||||
std::cout << "estimated error: " << lscg.error() << std::endl;
|
||||
// update b, and solve again
|
||||
x = lscg.solve(b);
|
||||
\endcode
|
||||
*
|
||||
* By default the iterations start with x=0 as an initial guess of the solution.
|
||||
* One can control the start using the solveWithGuess() method.
|
||||
*
|
||||
* \sa class ConjugateGradient, SparseLU, SparseQR
|
||||
*/
|
||||
template< typename _MatrixType, typename _Preconditioner>
|
||||
class LeastSquaresConjugateGradient : public IterativeSolverBase<LeastSquaresConjugateGradient<_MatrixType,_Preconditioner> >
|
||||
{
|
||||
typedef IterativeSolverBase<LeastSquaresConjugateGradient> Base;
|
||||
using Base::matrix;
|
||||
using Base::m_error;
|
||||
using Base::m_iterations;
|
||||
using Base::m_info;
|
||||
using Base::m_isInitialized;
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef _Preconditioner Preconditioner;
|
||||
|
||||
public:
|
||||
|
||||
/** Default constructor. */
|
||||
LeastSquaresConjugateGradient() : Base() {}
|
||||
|
||||
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
|
||||
*
|
||||
* This constructor is a shortcut for the default constructor followed
|
||||
* by a call to compute().
|
||||
*
|
||||
* \warning this class stores a reference to the matrix A as well as some
|
||||
* precomputed values that depend on it. Therefore, if \a A is changed
|
||||
* this class becomes invalid. Call compute() to update it with the new
|
||||
* matrix A, or modify a copy of A.
|
||||
*/
|
||||
template<typename MatrixDerived>
|
||||
explicit LeastSquaresConjugateGradient(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
|
||||
|
||||
~LeastSquaresConjugateGradient() {}
|
||||
|
||||
/** \internal */
|
||||
template<typename Rhs,typename Dest>
|
||||
void _solve_with_guess_impl(const Rhs& b, Dest& x) const
|
||||
{
|
||||
m_iterations = Base::maxIterations();
|
||||
m_error = Base::m_tolerance;
|
||||
|
||||
for(Index j=0; j<b.cols(); ++j)
|
||||
{
|
||||
m_iterations = Base::maxIterations();
|
||||
m_error = Base::m_tolerance;
|
||||
|
||||
typename Dest::ColXpr xj(x,j);
|
||||
internal::least_square_conjugate_gradient(matrix(), b.col(j), xj, Base::m_preconditioner, m_iterations, m_error);
|
||||
}
|
||||
|
||||
m_isInitialized = true;
|
||||
m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
using Base::_solve_impl;
|
||||
template<typename Rhs,typename Dest>
|
||||
void _solve_impl(const MatrixBase<Rhs>& b, Dest& x) const
|
||||
{
|
||||
x.setZero();
|
||||
_solve_with_guess_impl(b.derived(),x);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H
|
||||
115
external/include/eigen3/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h
vendored
Normal file
115
external/include/eigen3/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h
vendored
Normal file
@@ -0,0 +1,115 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SOLVEWITHGUESS_H
|
||||
#define EIGEN_SOLVEWITHGUESS_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
template<typename Decomposition, typename RhsType, typename GuessType> class SolveWithGuess;
|
||||
|
||||
/** \class SolveWithGuess
|
||||
* \ingroup IterativeLinearSolvers_Module
|
||||
*
|
||||
* \brief Pseudo expression representing a solving operation
|
||||
*
|
||||
* \tparam Decomposition the type of the matrix or decomposion object
|
||||
* \tparam Rhstype the type of the right-hand side
|
||||
*
|
||||
* This class represents an expression of A.solve(B)
|
||||
* and most of the time this is the only way it is used.
|
||||
*
|
||||
*/
|
||||
namespace internal {
|
||||
|
||||
|
||||
template<typename Decomposition, typename RhsType, typename GuessType>
|
||||
struct traits<SolveWithGuess<Decomposition, RhsType, GuessType> >
|
||||
: traits<Solve<Decomposition,RhsType> >
|
||||
{};
|
||||
|
||||
}
|
||||
|
||||
|
||||
template<typename Decomposition, typename RhsType, typename GuessType>
|
||||
class SolveWithGuess : public internal::generic_xpr_base<SolveWithGuess<Decomposition,RhsType,GuessType>, MatrixXpr, typename internal::traits<RhsType>::StorageKind>::type
|
||||
{
|
||||
public:
|
||||
typedef typename internal::traits<SolveWithGuess>::Scalar Scalar;
|
||||
typedef typename internal::traits<SolveWithGuess>::PlainObject PlainObject;
|
||||
typedef typename internal::generic_xpr_base<SolveWithGuess<Decomposition,RhsType,GuessType>, MatrixXpr, typename internal::traits<RhsType>::StorageKind>::type Base;
|
||||
typedef typename internal::ref_selector<SolveWithGuess>::type Nested;
|
||||
|
||||
SolveWithGuess(const Decomposition &dec, const RhsType &rhs, const GuessType &guess)
|
||||
: m_dec(dec), m_rhs(rhs), m_guess(guess)
|
||||
{}
|
||||
|
||||
EIGEN_DEVICE_FUNC Index rows() const { return m_dec.cols(); }
|
||||
EIGEN_DEVICE_FUNC Index cols() const { return m_rhs.cols(); }
|
||||
|
||||
EIGEN_DEVICE_FUNC const Decomposition& dec() const { return m_dec; }
|
||||
EIGEN_DEVICE_FUNC const RhsType& rhs() const { return m_rhs; }
|
||||
EIGEN_DEVICE_FUNC const GuessType& guess() const { return m_guess; }
|
||||
|
||||
protected:
|
||||
const Decomposition &m_dec;
|
||||
const RhsType &m_rhs;
|
||||
const GuessType &m_guess;
|
||||
|
||||
private:
|
||||
Scalar coeff(Index row, Index col) const;
|
||||
Scalar coeff(Index i) const;
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
// Evaluator of SolveWithGuess -> eval into a temporary
|
||||
template<typename Decomposition, typename RhsType, typename GuessType>
|
||||
struct evaluator<SolveWithGuess<Decomposition,RhsType, GuessType> >
|
||||
: public evaluator<typename SolveWithGuess<Decomposition,RhsType,GuessType>::PlainObject>
|
||||
{
|
||||
typedef SolveWithGuess<Decomposition,RhsType,GuessType> SolveType;
|
||||
typedef typename SolveType::PlainObject PlainObject;
|
||||
typedef evaluator<PlainObject> Base;
|
||||
|
||||
evaluator(const SolveType& solve)
|
||||
: m_result(solve.rows(), solve.cols())
|
||||
{
|
||||
::new (static_cast<Base*>(this)) Base(m_result);
|
||||
m_result = solve.guess();
|
||||
solve.dec()._solve_with_guess_impl(solve.rhs(), m_result);
|
||||
}
|
||||
|
||||
protected:
|
||||
PlainObject m_result;
|
||||
};
|
||||
|
||||
// Specialization for "dst = dec.solveWithGuess(rhs)"
|
||||
// NOTE we need to specialize it for Dense2Dense to avoid ambiguous specialization error and a Sparse2Sparse specialization must exist somewhere
|
||||
template<typename DstXprType, typename DecType, typename RhsType, typename GuessType, typename Scalar>
|
||||
struct Assignment<DstXprType, SolveWithGuess<DecType,RhsType,GuessType>, internal::assign_op<Scalar,Scalar>, Dense2Dense>
|
||||
{
|
||||
typedef SolveWithGuess<DecType,RhsType,GuessType> SrcXprType;
|
||||
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,Scalar> &)
|
||||
{
|
||||
Index dstRows = src.rows();
|
||||
Index dstCols = src.cols();
|
||||
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
|
||||
dst.resize(dstRows, dstCols);
|
||||
|
||||
dst = src.guess();
|
||||
src.dec()._solve_with_guess_impl(src.rhs(), dst/*, src.guess()*/);
|
||||
}
|
||||
};
|
||||
|
||||
} // end namepsace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SOLVEWITHGUESS_H
|
||||
Reference in New Issue
Block a user