add Eigen as a dependency
This commit is contained in:
234
external/include/eigen3/Eigen/src/Geometry/OrthoMethods.h
vendored
Normal file
234
external/include/eigen3/Eigen/src/Geometry/OrthoMethods.h
vendored
Normal file
@@ -0,0 +1,234 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_ORTHOMETHODS_H
|
||||
#define EIGEN_ORTHOMETHODS_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \geometry_module \ingroup Geometry_Module
|
||||
*
|
||||
* \returns the cross product of \c *this and \a other
|
||||
*
|
||||
* Here is a very good explanation of cross-product: http://xkcd.com/199/
|
||||
*
|
||||
* With complex numbers, the cross product is implemented as
|
||||
* \f$ (\mathbf{a}+i\mathbf{b}) \times (\mathbf{c}+i\mathbf{d}) = (\mathbf{a} \times \mathbf{c} - \mathbf{b} \times \mathbf{d}) - i(\mathbf{a} \times \mathbf{d} - \mathbf{b} \times \mathbf{c})\f$
|
||||
*
|
||||
* \sa MatrixBase::cross3()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
EIGEN_DEVICE_FUNC inline typename MatrixBase<Derived>::template cross_product_return_type<OtherDerived>::type
|
||||
#else
|
||||
inline typename MatrixBase<Derived>::PlainObject
|
||||
#endif
|
||||
MatrixBase<Derived>::cross(const MatrixBase<OtherDerived>& other) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,3)
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3)
|
||||
|
||||
// Note that there is no need for an expression here since the compiler
|
||||
// optimize such a small temporary very well (even within a complex expression)
|
||||
typename internal::nested_eval<Derived,2>::type lhs(derived());
|
||||
typename internal::nested_eval<OtherDerived,2>::type rhs(other.derived());
|
||||
return typename cross_product_return_type<OtherDerived>::type(
|
||||
numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)),
|
||||
numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)),
|
||||
numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0))
|
||||
);
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
|
||||
template< int Arch,typename VectorLhs,typename VectorRhs,
|
||||
typename Scalar = typename VectorLhs::Scalar,
|
||||
bool Vectorizable = bool((VectorLhs::Flags&VectorRhs::Flags)&PacketAccessBit)>
|
||||
struct cross3_impl {
|
||||
EIGEN_DEVICE_FUNC static inline typename internal::plain_matrix_type<VectorLhs>::type
|
||||
run(const VectorLhs& lhs, const VectorRhs& rhs)
|
||||
{
|
||||
return typename internal::plain_matrix_type<VectorLhs>::type(
|
||||
numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)),
|
||||
numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)),
|
||||
numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0)),
|
||||
0
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
/** \geometry_module \ingroup Geometry_Module
|
||||
*
|
||||
* \returns the cross product of \c *this and \a other using only the x, y, and z coefficients
|
||||
*
|
||||
* The size of \c *this and \a other must be four. This function is especially useful
|
||||
* when using 4D vectors instead of 3D ones to get advantage of SSE/AltiVec vectorization.
|
||||
*
|
||||
* \sa MatrixBase::cross()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_DEVICE_FUNC inline typename MatrixBase<Derived>::PlainObject
|
||||
MatrixBase<Derived>::cross3(const MatrixBase<OtherDerived>& other) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,4)
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,4)
|
||||
|
||||
typedef typename internal::nested_eval<Derived,2>::type DerivedNested;
|
||||
typedef typename internal::nested_eval<OtherDerived,2>::type OtherDerivedNested;
|
||||
DerivedNested lhs(derived());
|
||||
OtherDerivedNested rhs(other.derived());
|
||||
|
||||
return internal::cross3_impl<Architecture::Target,
|
||||
typename internal::remove_all<DerivedNested>::type,
|
||||
typename internal::remove_all<OtherDerivedNested>::type>::run(lhs,rhs);
|
||||
}
|
||||
|
||||
/** \geometry_module \ingroup Geometry_Module
|
||||
*
|
||||
* \returns a matrix expression of the cross product of each column or row
|
||||
* of the referenced expression with the \a other vector.
|
||||
*
|
||||
* The referenced matrix must have one dimension equal to 3.
|
||||
* The result matrix has the same dimensions than the referenced one.
|
||||
*
|
||||
* \sa MatrixBase::cross() */
|
||||
template<typename ExpressionType, int Direction>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_DEVICE_FUNC
|
||||
const typename VectorwiseOp<ExpressionType,Direction>::CrossReturnType
|
||||
VectorwiseOp<ExpressionType,Direction>::cross(const MatrixBase<OtherDerived>& other) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3)
|
||||
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
|
||||
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
|
||||
typename internal::nested_eval<ExpressionType,2>::type mat(_expression());
|
||||
typename internal::nested_eval<OtherDerived,2>::type vec(other.derived());
|
||||
|
||||
CrossReturnType res(_expression().rows(),_expression().cols());
|
||||
if(Direction==Vertical)
|
||||
{
|
||||
eigen_assert(CrossReturnType::RowsAtCompileTime==3 && "the matrix must have exactly 3 rows");
|
||||
res.row(0) = (mat.row(1) * vec.coeff(2) - mat.row(2) * vec.coeff(1)).conjugate();
|
||||
res.row(1) = (mat.row(2) * vec.coeff(0) - mat.row(0) * vec.coeff(2)).conjugate();
|
||||
res.row(2) = (mat.row(0) * vec.coeff(1) - mat.row(1) * vec.coeff(0)).conjugate();
|
||||
}
|
||||
else
|
||||
{
|
||||
eigen_assert(CrossReturnType::ColsAtCompileTime==3 && "the matrix must have exactly 3 columns");
|
||||
res.col(0) = (mat.col(1) * vec.coeff(2) - mat.col(2) * vec.coeff(1)).conjugate();
|
||||
res.col(1) = (mat.col(2) * vec.coeff(0) - mat.col(0) * vec.coeff(2)).conjugate();
|
||||
res.col(2) = (mat.col(0) * vec.coeff(1) - mat.col(1) * vec.coeff(0)).conjugate();
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Derived, int Size = Derived::SizeAtCompileTime>
|
||||
struct unitOrthogonal_selector
|
||||
{
|
||||
typedef typename plain_matrix_type<Derived>::type VectorType;
|
||||
typedef typename traits<Derived>::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar,2,1> Vector2;
|
||||
EIGEN_DEVICE_FUNC
|
||||
static inline VectorType run(const Derived& src)
|
||||
{
|
||||
VectorType perp = VectorType::Zero(src.size());
|
||||
Index maxi = 0;
|
||||
Index sndi = 0;
|
||||
src.cwiseAbs().maxCoeff(&maxi);
|
||||
if (maxi==0)
|
||||
sndi = 1;
|
||||
RealScalar invnm = RealScalar(1)/(Vector2() << src.coeff(sndi),src.coeff(maxi)).finished().norm();
|
||||
perp.coeffRef(maxi) = -numext::conj(src.coeff(sndi)) * invnm;
|
||||
perp.coeffRef(sndi) = numext::conj(src.coeff(maxi)) * invnm;
|
||||
|
||||
return perp;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
struct unitOrthogonal_selector<Derived,3>
|
||||
{
|
||||
typedef typename plain_matrix_type<Derived>::type VectorType;
|
||||
typedef typename traits<Derived>::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
EIGEN_DEVICE_FUNC
|
||||
static inline VectorType run(const Derived& src)
|
||||
{
|
||||
VectorType perp;
|
||||
/* Let us compute the crossed product of *this with a vector
|
||||
* that is not too close to being colinear to *this.
|
||||
*/
|
||||
|
||||
/* unless the x and y coords are both close to zero, we can
|
||||
* simply take ( -y, x, 0 ) and normalize it.
|
||||
*/
|
||||
if((!isMuchSmallerThan(src.x(), src.z()))
|
||||
|| (!isMuchSmallerThan(src.y(), src.z())))
|
||||
{
|
||||
RealScalar invnm = RealScalar(1)/src.template head<2>().norm();
|
||||
perp.coeffRef(0) = -numext::conj(src.y())*invnm;
|
||||
perp.coeffRef(1) = numext::conj(src.x())*invnm;
|
||||
perp.coeffRef(2) = 0;
|
||||
}
|
||||
/* if both x and y are close to zero, then the vector is close
|
||||
* to the z-axis, so it's far from colinear to the x-axis for instance.
|
||||
* So we take the crossed product with (1,0,0) and normalize it.
|
||||
*/
|
||||
else
|
||||
{
|
||||
RealScalar invnm = RealScalar(1)/src.template tail<2>().norm();
|
||||
perp.coeffRef(0) = 0;
|
||||
perp.coeffRef(1) = -numext::conj(src.z())*invnm;
|
||||
perp.coeffRef(2) = numext::conj(src.y())*invnm;
|
||||
}
|
||||
|
||||
return perp;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
struct unitOrthogonal_selector<Derived,2>
|
||||
{
|
||||
typedef typename plain_matrix_type<Derived>::type VectorType;
|
||||
EIGEN_DEVICE_FUNC
|
||||
static inline VectorType run(const Derived& src)
|
||||
{ return VectorType(-numext::conj(src.y()), numext::conj(src.x())).normalized(); }
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** \geometry_module \ingroup Geometry_Module
|
||||
*
|
||||
* \returns a unit vector which is orthogonal to \c *this
|
||||
*
|
||||
* The size of \c *this must be at least 2. If the size is exactly 2,
|
||||
* then the returned vector is a counter clock wise rotation of \c *this, i.e., (-y,x).normalized().
|
||||
*
|
||||
* \sa cross()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_DEVICE_FUNC typename MatrixBase<Derived>::PlainObject
|
||||
MatrixBase<Derived>::unitOrthogonal() const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return internal::unitOrthogonal_selector<Derived>::run(derived());
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_ORTHOMETHODS_H
|
||||
Reference in New Issue
Block a user